Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 752: 142190, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207513

RESUMO

Mangrove, seagrass, and coral habitats often lie adjacent to each other in the tropics and subtropics. Lateral carbon fluxes and their consecutive effects on CO2 dynamics and air-water fluxes along the ecosystem continuum are often overlooked. We measured the partial pressure of CO2 in water and associated biogeochemical parameters with a high temporal resolution and estimated air-water CO2 fluxes along the ecosystem continuum. Their lateral fluxes were estimated by using a biogeochemical mass-balance model. The results showed that the waters surrounding mangrove, seagrass, and coral habitats acted as a strong, moderate, and weak source of atmospheric CO2, respectively. The mangrove zone acted as a net source for TAlk, DIC, and DOC, but as a net sink for POC. The contribution of riverine and mangrove-derived OM was substantially high in mangrove sediment, indicating that net transport of POC towards the coastal sea was suppressed by the sediment trapping function of mangroves. The seagrass zone acted as a net source of all carbon forms and TAlk, whereas the coral zone acted as a net sink of TAlk, DIC, and DOC. The lateral transport of carbon from mangroves and rivers offset atmospheric CO2 uptake in the seagrass zone. DOC degradation might increase DIC, and other biogeochemical processes facilitate the functioning of the coral zone as a DOC sink. However, as a result of DIC uptake by autotrophs, mainly in the coral zone, the whole ecosystem continuum was a net sink of DIC and atmospheric CO2 evasion was lowered. We conclude that lateral transport of riverine and mangrove-derived DIC, TAlk, and DOC affect CO2 dynamics and air-water fluxes in seagrass and coral ecosystems. Thus, studies of lateral carbon fluxes at local and regional scales can improve global carbon budget estimates.


Assuntos
Antozoários , Ecossistema , Animais , Carbono , Dióxido de Carbono , Áreas Alagadas
2.
Mar Pollut Bull ; 115(1-2): 67-74, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27908575

RESUMO

In the present study, we determined the common morphological characteristics of the feces of Mytilus galloprovincialis to develop a method for visually discriminating the feces of this mussel in deposited materials. This method can be used to assess the effect of mussel feces on benthic environments. The accuracy of visual morphology-based discrimination of mussel feces in deposited materials was confirmed by DNA analysis. Eighty-nine percent of mussel feces shared five common morphological characteristics. Of the 372 animal species investigated, only four species shared all five of these characteristics. More than 96% of the samples were visually identified as M. galloprovincialis feces on the basis of morphology of the particles containing the appropriate mitochondrial DNA. These results suggest that mussel feces can be discriminated with high accuracy on the basis of their morphological characteristics. Thus, our method can be used to quantitatively assess the effect of mussel feces on local benthic environments.


Assuntos
Fezes , Mytilus , Animais , DNA Mitocondrial/genética , Mytilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA