Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002796

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Assuntos
Mutação com Ganho de Função/genética , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais , Adulto , Idoso , Índice de Massa Corporal , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , AMP Cíclico/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , beta-Arrestinas/metabolismo
2.
N Engl J Med ; 385(17): 1581-1592, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34614324

RESUMO

BACKGROUND: GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS: We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS: Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS: Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação , Obesidade Infantil/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Adolescente , Estatura , Criança , Cromograninas/genética , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Humanos , Masculino , Mutação de Sentido Incorreto , Receptores da Tireotropina/metabolismo , Transdução de Sinais , Sequenciamento do Exoma
3.
J Biol Chem ; 290(40): 24495-508, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26269596

RESUMO

X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and ß-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) ß-arrestin only; and 3) Gq and ß-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways.


Assuntos
Arrestinas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores da Neurocinina-1/metabolismo , Alanina/química , Sítio Alostérico , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Método de Monte Carlo , Conformação Proteica , Receptores de Grelina/metabolismo , Transdução de Sinais , Sódio/química , Transfecção , Água/química , beta-Arrestinas
4.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451873

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over ß-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models. This constitutes a major finding in which nuanced, mechanistic receptor signaling dynamics in vitro mediate real-world clinical differentiation within a drug class. Because of the striking bench-top-to-bed side relevance of this biased signaling phenomenon, we have undertaken a review of the emerging data detailing biased agonism at the GLP-1R. In this review, we introduce the core concept of biased agonism followed by a detailed consideration of the key mechanisms, including ligand-mediated bias, receptor-mediated bias, and systems/cell-type bias. Current industry programs are largely, if not entirely, focused on developing biased ligands, and so we have dedicated a section of the review to a brief meta-analysis of compounds reported to drive biased signaling, with a consideration of the structural determinants of receptor-ligand interactions. In this work, we aim to assess the current knowledge regarding signaling bias at the GLP-1R and how these ideas might be leveraged in future optimization.


Assuntos
Liraglutida , Receptores Acoplados a Proteínas G , Ligantes , Liraglutida/farmacologia , Exenatida/farmacologia , Transdução de Sinais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
5.
Sci Adv ; 10(10): eadj3823, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446876

RESUMO

Mutations that perturb leptin-melanocortin signaling are known to cause hyperphagia and obesity, but energy expenditure has not been well studied outside rodents. We report on a common canine mutation in pro-opiomelanocortin (POMC), which prevents production of ß-melanocyte-stimulating hormone (ß-MSH) and ß-endorphin but not α-MSH; humans, similar to dogs, produce α-MSH and ß-MSH from the POMC propeptide, but rodents produce only α-MSH. We show that energy expenditure is markedly lower in affected dogs, which also have increased motivational salience in response to a food cue, indicating increased wanting or hunger. There was no difference in satiety at a modified ad libitum meal or in their hedonic response to food, nor disruption of adrenocorticotropic hormone (ACTH) or thyroid axes. In vitro, we show that ß-MSH signals comparably to α-MSH at melanocortin receptors. These data implicate ß-MSH and ß-endorphin as important in determining hunger and moderating energy expenditure and suggest that this role is independent of the presence of α-MSH.


Assuntos
beta-Endorfina , beta-MSH , Humanos , Cães , Animais , beta-Endorfina/genética , Metabolismo Basal , Pró-Opiomelanocortina/genética , Fome , alfa-MSH/genética
6.
Nat Metab ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871982

RESUMO

Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes1. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide2 and AMG-133 (ref. 3) combining GIPR antagonism with GLP-1R agonism. This underlines the importance of a better understanding of the GIP system. Here we show the necessity of ß-arrestin recruitment for GIPR function, by combining in vitro pharmacological characterization of 47 GIPR variants with burden testing of clinical phenotypes and in vivo studies. Burden testing of variants with distinct ligand-binding capacity, Gs activation (cyclic adenosine monophosphate production) and ß-arrestin 2 recruitment and internalization shows that unlike variants solely impaired in Gs signalling, variants impaired in both Gs and ß-arrestin 2 recruitment contribute to lower adiposity-related traits. Endosomal Gs-mediated signalling of the variants shows a ß-arrestin dependency and genetic ablation of ß-arrestin 2 impairs cyclic adenosine monophosphate production and decreases GIP efficacy on glucose control in male mice. This study highlights a crucial impact of ß-arrestins in regulating GIPR signalling and overall preservation of biological activity that may facilitate new developments in therapeutic targeting of the GIPR system.

7.
J Biol Chem ; 287(40): 33488-502, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22846991

RESUMO

Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.


Assuntos
Receptores de Grelina/metabolismo , Alanina/química , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Células COS , Chlorocebus aethiops , Análise Mutacional de DNA , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores de Grelina/química , Transdução de Sinais , beta-Arrestinas
8.
Nat Commun ; 14(1): 1450, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922513

RESUMO

Disruption of brain-expressed G protein-coupled receptor-10 (GPR10) causes obesity in animals. Here, we identify multiple rare variants in GPR10 in people with severe obesity and in normal weight controls. These variants impair ligand binding and G protein-dependent signalling in cells. Transgenic mice harbouring a loss of function GPR10 variant found in an individual with obesity, gain excessive weight due to decreased energy expenditure rather than increased food intake. This evidence supports a role for GPR10 in human energy homeostasis. Therapeutic targeting of GPR10 may represent an effective weight-loss strategy.


Assuntos
Obesidade , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Metabolismo Energético , Camundongos Transgênicos , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Aumento de Peso/genética
9.
J Biol Chem ; 286(43): 37543-54, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21878623

RESUMO

Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.


Assuntos
Receptores CCR5/química , Regulação Alostérica/fisiologia , Amidas/química , Animais , Benzoatos/química , Células COS , Quimiocinas/química , Quimiocinas/genética , Quimiocinas/metabolismo , Chlorocebus aethiops , Óxidos N-Cíclicos/química , Dicetopiperazinas , Humanos , Oximas , Piperazinas/química , Piperidinas/química , Piridinas/química , Compostos de Amônio Quaternário/química , Receptores CCR2/química , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Espiro/química
10.
Front Endocrinol (Lausanne) ; 13: 891586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846282

RESUMO

The intestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is involved in important physiological functions, including postprandial blood glucose homeostasis, bone remodeling, and lipid metabolism. While mutations leading to physiological changes can be identified in large-scale sequencing, no systematic investigation of GIP missense variants has been performed. Here, we identified 168 naturally occurring missense variants in the human GIP genes from three independent cohorts comprising ~720,000 individuals. We examined amino acid changing variants scattered across the pre-pro-GIP peptide using in silico effect predictions, which revealed that the sequence of the fully processed GIP hormone is more protected against mutations than the rest of the precursor protein. Thus, we observed a highly species-orthologous and population-specific conservation of the GIP peptide sequence, suggestive of evolutionary constraints to preserve the GIP peptide sequence. Elucidating the mutational landscape of GIP variants and how they affect the structural and functional architecture of GIP can aid future biological characterization and clinical translation.


Assuntos
Glicemia , Incretinas/metabolismo , Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Humanos , Mutação de Sentido Incorreto , Seleção Genética
11.
Nat Med ; 28(12): 2537-2546, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536256

RESUMO

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Assuntos
Obesidade Mórbida , Receptor 5-HT2C de Serotonina , Animais , Criança , Feminino , Humanos , Masculino , Camundongos , Células HEK293 , Obesidade/genética , Receptor 5-HT2C de Serotonina/genética , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Adaptação Psicológica
12.
J Biol Chem ; 285(25): 19625-36, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20395291

RESUMO

Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the beta2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed conformation. Manipulations of the rotamer state of TyrVII:20 and TrpVI:13 demonstrated that these residues served as gates for the water molecules at the intracellular and extracellular ends of the hydrogen bond network, respectively. TrpVI:13 at the bottom of the main ligand-binding pocket was shown to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended allosteric interface between the transmembrane segments being of crucial importance for receptor signaling and that part of the function of the rotamer micro-switches, TyrVII:20 and TrpVI:13, is to gate or trap the water molecules.


Assuntos
Água/química , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Análise Mutacional de DNA , Ligação de Hidrogênio , Ligantes , Modelos Biológicos , Conformação Molecular , Mutagênese , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
13.
Cancer Invest ; 29(2): 137-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21261473

RESUMO

TGFß signaling cascade plays a vital role in neoplastic transformation, but the function of betaglycan, which is a TGFß accessory receptor, is still unknown in particular cancer. Evaluation of betaglycan expression both at mRNA (real-time PCR) and protein (ELISA) level in the context of TGFß canonical signaling components, i.e., TGFß1, TGFß2, and TGFßRII, in endometrial carcinomas was performed. Betaglycan mRNA expression level was significantly (p < .001) downregulated with simultaneous betaglycan protein level upregulation in cancer samples. Obtained results suggest that endometrial cancer is associated with disruption of accessory receptor betaglycan expression, what may alter TGFß2-induced signaling.


Assuntos
Neoplasias do Endométrio/patologia , Regulação Neoplásica da Expressão Gênica , Proteoglicanas/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/fisiologia , Proteoglicanas/análise , Proteoglicanas/genética , RNA Mensageiro/análise , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/análise , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/fisiologia , Fator de Crescimento Transformador beta2/análise , Fator de Crescimento Transformador beta2/fisiologia
14.
Oncology ; 81(3-4): 243-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116456

RESUMO

OBJECTIVE: Alterations in the transforming growth factor-ß (TGF-ß) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-ß pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-ß(1) and TGF-ß type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS: mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS: The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS: An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-ß(1) and TGF-ß type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.


Assuntos
Antígenos CD/biossíntese , Neoplasias do Endométrio/metabolismo , Receptores de Superfície Celular/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Regulação para Baixo , Endoglina , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
15.
Nat Med ; 27(6): 1088-1096, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34045736

RESUMO

Mutations in the melanocortin 4 receptor gene (MC4R) are associated with obesity but little is known about the prevalence and impact of such mutations throughout human growth and development. We examined the MC4R coding sequence in 5,724 participants from the Avon Longitudinal Study of Parents and Children, functionally characterized all nonsynonymous MC4R variants and examined their association with anthropometric phenotypes from childhood to early adulthood. The frequency of heterozygous loss-of-function (LoF) mutations in MC4R was ~1 in 337 (0.30%), considerably higher than previous estimates. At age 18 years, mean differences in body weight, body mass index and fat mass between carriers and noncarriers of LoF mutations were 17.76 kg (95% CI 9.41, 26.10), 4.84 kg m-2 (95% CI 2.19, 7.49) and 14.78 kg (95% CI 8.56, 20.99), respectively. MC4R LoF mutations may be more common than previously reported and carriers of such variants may enter adult life with a substantial burden of excess adiposity.


Assuntos
Peso Corporal/genética , Predisposição Genética para Doença , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética , Adolescente , Adulto , Criança , Pré-Escolar , Heterozigoto , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Obesidade/epidemiologia , Obesidade/patologia , Fenótipo , Reino Unido , Adulto Jovem
16.
Cell Rep ; 34(12): 108862, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761344

RESUMO

The Melanocortin-4 Receptor (MC4R) plays a pivotal role in energy homeostasis. We used human MC4R mutations associated with an increased or decreased risk of obesity to dissect mechanisms that regulate MC4R function. Most obesity-associated mutations impair trafficking to the plasma membrane (PM), whereas obesity-protecting mutations either accelerate recycling to the PM or decrease internalization, resulting in enhanced signaling. MC4R mutations that do not affect canonical Gαs protein-mediated signaling, previously considered to be non-pathogenic, nonetheless disrupt agonist-induced internalization, ß-arrestin recruitment, and/or coupling to Gαs, establishing their causal role in severe obesity. Structural mapping reveals ligand-accessible sites by which MC4R couples to effectors and residues involved in the homodimerization of MC4R, which is disrupted by multiple obesity-associated mutations. Human genetic studies reveal that endocytosis, intracellular trafficking, and homodimerization regulate MC4R function to a level that is physiologically relevant, supporting the development of chaperones, agonists, and allosteric modulators of MC4R for weight loss therapy.


Assuntos
Peso Corporal/genética , Endocitose , Variação Genética , Multimerização Proteica , Receptor Tipo 4 de Melanocortina/genética , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Receptor Tipo 4 de Melanocortina/química , Transdução de Sinais , beta-Arrestinas/metabolismo
17.
Mol Pharmacol ; 75(1): 44-59, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18923064

RESUMO

A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone secretagogue GHRP-6) plus four nonpeptide agonists-the original benzolactam L-692,429 [3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5-yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamide], the spiroindoline sulfonamide MK-677 [N-[1(R)-1, 2-dihydro-1-ethanesulfonylspiro-3H-indole-3,4'-piperidin)-1'-yl]carbonyl-2-(phenylmethoxy)-ethyl-2-amino-2-methylpropanamide], and two novel oxindole derivatives, SM-130686 [(+)-6-carbamoyl-3-(2-chlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole] and SM-157740 [(+/-)-6-carbamoyl-3-(2, 4-dichlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole)]. The strongest mutational effect with respect to decrease in potency for stimulation of inositol phosphate turnover was for all six agonists the GluIII:09-to-Gln substitution in the extracellular segment of TM-III. Likewise, all six agonists were affected by substitutions of PheVI:16, ArgVI:20, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common mutational map for agonism but it was not identical with the map for the agonist property of these small-molecule ligands. In molecular models, built over the inactive conformation of rhodopsin, low energy conformations of the nonpeptide agonists could be docked to satisfy many of their mutational hits. It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor.


Assuntos
Sítios de Ligação , Oligopeptídeos/química , Receptores de Grelina/agonistas , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Benzazepinas/farmacologia , Sequência Conservada , Relação Dose-Resposta a Droga , Grelina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Receptores de Grelina/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Tetrazóis/farmacologia
18.
Mol Metab ; 19: 49-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472415

RESUMO

OBJECTIVES: GPR142, which is highly expressed in pancreatic islets, has recently been deorphanized as a receptor for aromatic amino acids; however, its physiological role and pharmacological potential is unclear. METHODS AND RESULTS: We find that GPR142 is expressed not only in ß- but also in α-cells of the islets as well as in enteroendocrine cells, and we confirm that GPR142 is a highly selective sensor of essential aromatic amino acids, in particular Trp and oligopeptides with N-terminal Trp. GPR142 knock-out mice displayed a very limited metabolic phenotype but demonstrated that L-Trp induced secretion of pancreatic and gut hormones is mediated through GPR142 but that the receptor is not required for protein-induced hormone secretion. A synthetic GPR142 agonist stimulated insulin and glucagon as well as GIP, CCK, and GLP-1 secretion. In particular, GIP secretion was sensitive to oral administration of the GPR142 agonist an effect which in contrast to the other hormones was blocked by protein load. Oral administration of the GPR142 agonist increased [3H]-2-deoxyglucose uptake in muscle and fat depots mediated through insulin action while it lowered liver glycogen conceivably mediated through glucagon, and, consequently, it did not lower total blood glucose. Nevertheless, acute administration of the GPR142 agonist strongly improved oral glucose tolerance in both lean and obese mice as well as Zucker fatty rat. Six weeks in-feed chronic treatment with the GPR142 agonist did not affect body weight in DIO mice, but increased energy expenditure and carbohydrate utilization, lowered basal glucose, and improved insulin sensitivity. CONCLUSIONS: GPR142 functions as a sensor of aromatic amino acids, controlling GIP but also CCK and GLP-1 as well as insulin and glucagon in the pancreas. GPR142 agonists could have novel interesting potential in modifying metabolism through a balanced action of gut hormones as well as both insulin and glucagon.


Assuntos
Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos Aromáticos/metabolismo , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Ratos , Ratos Zucker , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/metabolismo , Triptofano/metabolismo
19.
Postepy Biochem ; 54(3): 264-73, 2008.
Artigo em Polonês | MEDLINE | ID: mdl-19112825

RESUMO

TGF beta signalling pathways apart from receptors, their ligands and intracellular effectors consist of proteins capable to bind ligands which are not classical receptors. They do not transmit the signal directly into the cell but by their interaction with TGF beta family factors and TGF beta type I and II receptors can influence TGF beta cascade activity. There are three proteins characterised by such features i.e., betaglycan (TGF beta RIII), endoglin (CD105) and antigen CD109 which are commonly called as TGF beta accessory/auxiliary receptors or TGF beta type III receptors. Their key function is to modulate accessibility of ligands to TGF beta type I and II receptors. The role of TGF beta accessory receptors has been well documented for signal transduction via TGF beta isoforms--TGF beta 1, TGF beta 2 and TGF beta 3. Each TGF beta accessory receptor has different TGF beta isoforms binding specificity and cellular response character. TGF beta cascade is the only known cellular signalling pathway for which accessory receptors are identified until now.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD/metabolismo , Endoglina , Proteínas Ligadas por GPI , Proteínas de Neoplasias/metabolismo , Proteoglicanas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
20.
Cell Metab ; 27(2): 419-427.e4, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414687

RESUMO

Palmitic acid hydroxystearic acids (PAHSAs) are endogenous lipids with anti-diabetic and anti-inflammatory effects. PAHSA levels are reduced in serum and adipose tissue of insulin-resistant people and high-fat diet (HFD)-fed mice. Here, we investigated whether chronic PAHSA treatment enhances insulin sensitivity and which receptors mediate PAHSA effects. Chronic PAHSA administration in chow- and HFD-fed mice raises serum and tissue PAHSA levels ∼1.4- to 3-fold. This improves insulin sensitivity and glucose tolerance without altering body weight. PAHSA administration in chow-fed, but not HFD-fed, mice augments insulin and glucagon-like peptide (GLP-1) secretion. PAHSAs are selective agonists for GPR40, increasing Ca+2 flux, but not intracellular cyclic AMP. Blocking GPR40 reverses improvements in glucose tolerance and insulin sensitivity in PAHSA-treated chow- and HFD-fed mice and directly inhibits PAHSA augmentation of glucose-stimulated insulin secretion in human islets. In contrast, GLP-1 receptor blockade in PAHSA-treated chow-fed mice reduces PAHSA effects on glucose tolerance, but not on insulin sensitivity. Thus, PAHSAs activate GPR40, which is involved in their beneficial metabolic effects.


Assuntos
Glucose/metabolismo , Homeostase , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Esteáricos/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Células HEK293 , Homeostase/efeitos dos fármacos , Humanos , Inflamação/patologia , Resistência à Insulina , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA