Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 74(1): 135-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693003

RESUMO

BACKGROUND & AIMS: RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant adenosine-to-inosine RNA editing is implicated in cancers. Until now, very few functionally important protein-recoding editing targets have been discovered. Here, we investigated the role of a recently discovered protein-recoding editing target COPA (coatomer subunit α) in hepatocellular carcinoma (HCC). METHODS: Clinical implication of COPA editing was studied in a cohort of 125 HCC patients. CRISPR/Cas9-mediated knockout of the editing site complementary sequence (ECS) was used to delete edited COPA transcripts endogenously. COPA editing-mediated change in its transcript or protein stability was investigated upon actinomycin D or cycloheximide treatment, respectively. Functional difference in tumourigenesis between wild-type and edited COPA (COPAWTvs. COPAI164V) and the exact mechanisms were also studied in cell models and mice. RESULTS: ADAR2 binds to double-stranded RNA formed between edited exon 6 and the ECS at intron 6 of COPA pre-mRNA, causing an isoleucine-to-valine substitution at residue 164. Reduced editing of COPA is implicated in the pathogenesis of HCC, and more importantly, it may be involved in many cancer types. Upon editing, COPAWT switches from a tumour-promoting gene to a tumour suppressor that has a dominant-negative effect. Moreover, COPAI164V may undergo protein conformational change and therefore become less stable than COPAWT. Mechanistically, COPAI164V may deactivate the PI3K/AKT/mTOR pathway through downregulation of caveolin-1 (CAV1). CONCLUSIONS: We uncover an RNA editing-associated mechanism of hepatocarcinogenesis by which downregulation of ADAR2 caused the loss of tumour suppressive COPAI164V and concurrent accumulation of tumour-promoting COPAWT in tumours; a rapid degradation of COPAI164V protein and hyper-activation of the PI3K/AKT/mTOR pathway further promote tumourigenesis. LAY SUMMARY: RNA editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. In this study, we found that RNA editing of a gene known as coatomer subunit α (COPA) is lower in tumour samples and discovered that this editing process changes COPA protein from a tumour-promoting form to a tumour-suppressive form. Loss of the edited COPA promotes the development of liver cancer.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Proteína Coatomer/genética , Regulação da Expressão Gênica/genética , Neoplasias Hepáticas , Edição de RNA/genética , Adenosina Desaminase/genética , Animais , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Caveolina 1/metabolismo , Linhagem Celular , Regulação para Baixo , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Proteínas de Neoplasias , Estabilidade Proteica , Proteínas de Ligação a RNA/genética
2.
Nat Commun ; 13(1): 1508, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314703

RESUMO

Circular RNAs (circRNAs) are produced by head-to-tail back-splicing which is mainly facilitated by base-pairing of reverse complementary matches (RCMs) in circRNA flanking introns. Adenosine deaminases acting on RNA (ADARs) are known to bind double-stranded RNAs for adenosine to inosine (A-to-I) RNA editing. Here we characterize ADARs as potent regulators of circular transcriptome by identifying over a thousand of circRNAs regulated by ADARs in a bidirectional manner through and beyond their editing function. We find that editing can stabilize or destabilize secondary structures formed between RCMs via correcting A:C mismatches to I(G)-C pairs or creating I(G).U wobble pairs, respectively. We provide experimental evidence that editing also favors the binding of RNA-binding proteins such as PTBP1 to regulate back-splicing. These ADARs-regulated circRNAs which are ubiquitously expressed in multiple types of cancers, demonstrate high functional relevance to cancer. Our findings support a hitherto unappreciated bidirectional regulation of circular transcriptome by ADARs and highlight the complexity of cross-talk in RNA processing and its contributions to tumorigenesis.


Assuntos
Neoplasias , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Circular/genética , RNA de Cadeia Dupla , Transcriptoma
3.
Sci Adv ; 6(25): eaba5136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596459

RESUMO

RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.


Assuntos
Adenosina , Proteínas Reguladoras de Apoptose , Neoplasias , Proteínas de Ligação a RNA , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Inosina/genética , Inosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA