RESUMO
Subclass Ceriantharia is a well-defined and probably ancient group of marine benthic organisms renowned for their bilateral symmetry, which is reflected in the arrangement of tentacles and mesenteries. Four species of Ceriantharia have been reported in the Arctic, including Cerianthus lloydii Gosse, 1859, also known from the Northern Atlantic and Northern Pacific. The integrity of this species was questioned in the literature, so we performed a molecular study of C. lloydii from several geographically distant locations using 18S and COI genes. The phylogenetic reconstructions show that specimens of C. lloydii form a single group with high support (>0.98), subdivided into distinctive clades: (1) specimens from Northern Europe, the Black and Barents seas, and (2) specimens from the White, Kara, Laptev, and Bering seas and also the Canadian Arctic and the Labrador Sea available via the BOLD database. There are several BOLD COI sequences of Pachycerianthus borealis (Verrill, 1873), which form a third clade of the C. lloydii group, sister to the European and Arctic clades. Based on low similarity (COI 86-87%) between C. lloydii and the type species of the genus Cerianthus Delle Chiaje, 1841-C. membranaceus (Gmelin, 1791), we propose a new status for the genus Synarachnactis Carlgren, 1924, and a new family Synarachnactidae to accommodate C. lloydii.
RESUMO
Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , PesqueirosRESUMO
For many years an undescribed species of the genus Bathypathes has been misidentified as Bathypathes alternata Brook, 1889 (a species currently re-assigned to the genus Alternatipathes). This new species is rather common at mid- and lower bathyal depths of the Pacific, Atlantic and Indian oceans, often in areas with high concentrations of commercially valuable cobalt-rich ferromanganese crusts, where it was observed in underwater photo and video transects to occur in high densities. Under the name B. alternata this species is recorded in several inventories and databases. There is an urgent need for a formal description of this misidentified and widely distributed species to avoid further confusion. The new species is superficially similar to A. alternata in having a monopodial corallum and simple, bilateral and alternately arranged pinnules. However, it differs from the former in that it has an upright corallum with a straight pinnulated part (vs. a horizontally bent pinnulated part), pinnules of uniform length and density (vs. decreasing regularly distally), and a constant distal angle formed by the pinnules and the stem along different parts of the corallum (vs. a decreasing distal angle near the top). The new species can therefore be easily distinguished from A. alternata in underwater imagery. We formally describe this new species in the genus Bathypathes and assign it the new name B. pseudoalternata. An extensive synonymy list with previous misidentified records is provided. To evaluate the distributional patterns of the new species we review the geographic distribution of antipatharians reported below 800 m. The majority of the hitherto described lower bathyal and abyssal species have been recorded from one biogeographic province; however, 20 species are known from more than two provinces, and only three species are widely distributed (>5 provinces), including the newly described Bathypathes pseudoalternata. Members of the family Schizopathidae, to which the new species belongs, represent the majority of the lower bathyal (50.54%) and abyssal (82.35%) species.
Assuntos
Antozoários , Animais , Oceano Índico , Imagens, Psicoterapia , FerroRESUMO
We describe five new species of black corals from the Great Barrier Reef and Coral Sea, collected at depths ranging from 14 to 789 m: two in the family Antipathidae (Antipathes falkorae sp. nov. and Antipathes morrisi sp. nov.), two in the family Aphanipathidae (Aphanipathes flailum sp. nov. and Rhipidipathes helae sp. nov.), and one in the family Cladopathidae (Hexapathes bikofskii sp. nov.). We also present a phylogeny of 80 black corals reconstructed from a target capture dataset of ultraconserved elements and exons, to show the systematic relationships among new and nominal species. This phylogeny also represents a backbone for future species descriptions and research into the evolutionary history of the Antipatharia.
Assuntos
Antozoários , Animais , Antozoários/genética , Filogenia , Austrália , Recifes de CoraisRESUMO
Five new species of deep-sea antipatharian corals are described from the North Pacific primarily collected off the coast of Alaska and on adjacent seamounts. All the species are referred to the family Schizopathidae. Described as new are: Alternatipathes mirabilis, Bathypathes ptiloides, Bathypathes tiburonae, Bathypathes alaskensis, and Parantipathes pluma. Illustrations of the type material of Bathypathes patula, B. patula var. plenispina and B. tenuis are provided for comparative proposes. Bathypathes patula var. plenispina is here recognized as a species distinct from B. patula, and B. tenuis is considered incertae sedis due to the poor condition of the type material.
Assuntos
Antozoários , Mirabilis , AnimaisRESUMO
Scientific misconceptions are likely leading to miscalculations of the environmental impacts of deep-seabed mining. These result from underestimating mining footprints relative to habitats targeted and poor understanding of the sensitivity, biodiversity, and dynamics of deep-sea ecosystems. Addressing these misconceptions and knowledge gaps is needed for effective management of deep-seabed mining.
Assuntos
Ecossistema , Mineração , BiodiversidadeRESUMO
A new species of antipatharian (black coral) in the genus Trissopathes is described. It is common in the bathyal zone of the north-east Atlantic, including the Bay of Biscay, Celtic Slope and adjacent banks and seamounts. The species is often observed in underwater photographs from untrawled parts of carbonate mounds in the area. Trissopathes grasshoffi sp. nov. can be easily distinguished from its three congeners by having relatively sparse branching, a higher density of primary pinnules, and 3-6 secondary anterolateral pinnules as well as by the shape and size of its spines. The present state of knowledge of Trissopathes is reviewed.
Assuntos
Antozoários , AnimaisRESUMO
The morphology of archaeobalanid barnacles of the genera Conopea and Acasta inhabiting cnidarians of the orders Alcyonacea and Antipatharia was surveyed. Based on morphological characteristics, it became evident that the species of the nominal genus Conopea fell into three natural groups affiliated to three archaeobalanid genera, Conopea s.s., Acasta and Solidobalanus. The relationships between the species of Conopea s.l. and those of Acasta inhabiting alcyanaceans are analyzed using a cladistic approach. The barnacles of the genus Conopea s.s. are characterized by a strong, firm shell; the orifice is not dentate; rostral and sometimes carinal plates are often elongated in their basal parts; the rostro-carinal axis of the basis is often elongated and clasps the axis of the host coral; the radii have summits parallel to the basal margin of the parietes, and denticulated sutural margins; the scutum has simple growth ridges without longitudinal striation or ribs; the basitergal angle is truncated (sinusoid); and the basidorsal point of the penis is developed. The genus Conopea s.s. encompasses 20 epizoic species from tropical and temperate seas, inhabiting alcyonaceans (sea fans or gorgonians) and antipatharians. A new species of Conopea and a new species of Acasta are described, and a key to the species of Conopea s.s. is provided.