Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891788

RESUMO

In the process of tissue engineering, several types of stresses can influence the outcome of tissue regeneration. This outcome can be understood by designing hydrogels that mimic this process and studying how such hydrogel scaffolds and cells behave under a set of stresses. Here, a hydrogel formulation is proposed to create biomimetic scaffolds suitable for fibroblast cell culture. Subsequently, we examine the impact of external stresses on fibroblast cells cultured on both solid and porous hydrogels. These stresses included mechanical tension and altered-gravity conditions experienced during the 83rd parabolic flight campaign conducted by the European Space Agency. This study shows distinct cellular responses characterized by cell aggregation and redistribution in regions of intensified stress concentration. This paper presents a new biomimetic hydrogel that fulfills tissue-engineering requirements in terms of biocompatibility and mechanical stability. Moreover, it contributes to our comprehension of cellular biomechanics under diverse gravitational conditions, shedding light on the dynamic cellular adaptations versus varying stress environments.


Assuntos
Fibroblastos , Hidrogéis , Engenharia Tecidual , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/citologia , Hidrogéis/química , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Estresse Mecânico , Biomimética/métodos , Animais , Alicerces Teciduais/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Camundongos
2.
Cell Mol Life Sci ; 78(23): 7795-7812, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714361

RESUMO

Astronauts on board the International Space Station (ISS) are exposed to the damaging effects of microgravity and cosmic radiation. One of the most critical and sensitive districts of an organism is the eye, particularly the retina, and > 50% of astronauts develop a complex of alterations designated as spaceflight-associated neuro-ocular syndrome. However, the pathogenesis of this condition is not clearly understood. In the current study, we aimed to explore the cellular and molecular effects induced in the human retinal pigment ARPE-19 cell line by their transfer to and 3-day stay on board the ISS in the context of an experiment funded by the Agenzia Spaziale Italiana. Treatment of cells on board the ISS with the well-known bioenergetic, antioxidant, and antiapoptotic coenzyme Q10 was also evaluated. In the ground control experiment, the cells were exposed to the same conditions as on the ISS, with the exception of microgravity and radiation. The transfer of ARPE-19 retinal cells to the ISS and their living on board for 3 days did not affect cell viability or apoptosis but induced cytoskeleton remodeling consisting of vimentin redistribution from the cellular boundaries to the perinuclear area, underlining the collapse of the network of intermediate vimentin filaments under unloading conditions. The morphological changes endured by ARPE-19 cells grown on board the ISS were associated with changes in the transcriptomic profile related to the cellular response to the space environment and were consistent with cell dysfunction adaptations. In addition, the results obtained from ARPE-19 cells treated with coenzyme Q10 indicated its potential to increase cell resistance to damage.


Assuntos
Apoptose , Dano ao DNA , Regulação da Expressão Gênica , Epitélio Pigmentado da Retina/efeitos dos fármacos , Voo Espacial/métodos , Ubiquinona/análogos & derivados , Ausência de Peso , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Ubiquinona/farmacologia
3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163344

RESUMO

The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.


Assuntos
Hipocampo , Microglia , Animais , Glucose , Hipóxia , Isquemia , Oxigênio , Fenótipo , Ratos
4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430601

RESUMO

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Suturas , Queratinócitos/fisiologia , Procedimentos Neurocirúrgicos
5.
FASEB J ; 34(8): 11143-11167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627872

RESUMO

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.5 mT, 10 min/week), with and without exercise, on systemic metabolism and gut microbiome in four groups of mice: (a) no intervention; (b) PEMF treatment; (c) exercise; (d) exercise and PEMF treatment. The combination of PEMFs and exercise for 6 weeks enhanced running performance and upregulated muscular and adipose Pgc-1α transcript levels, whereas exercise alone was incapable of elevating Pgc-1α levels. The gut microbiome Firmicutes/Bacteroidetes ratio decreased with exercise and PEMF exposure, alone or in combination, which has been associated in published studies with an increase in lean body mass. After 2 months, brief PEMF treatment alone increased Pgc-1α and mitohormetic gene expression and after >4 months PEMF treatment alone enhanced oxidative muscle expression, fatty acid oxidation, and reduced insulin levels. Hence, short-term PEMF treatment was sufficient to instigate PGC-1α-associated transcriptional cascades governing systemic mitohormetic adaptations, whereas longer-term PEMF treatment was capable of inducing related metabolic adaptations independently of exercise.


Assuntos
Microbioma Gastrointestinal/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Bacteroidetes/crescimento & desenvolvimento , Composição Corporal/fisiologia , Ácidos Graxos/metabolismo , Feminino , Firmicutes/crescimento & desenvolvimento , Seguimentos , Expressão Gênica/fisiologia , Insulina/metabolismo , Campos Magnéticos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
6.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925533

RESUMO

Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.


Assuntos
Osso e Ossos/metabolismo , Ausência de Peso/efeitos adversos , Doenças Ósseas Metabólicas/metabolismo , Cálcio , Exercício Físico/fisiologia , Humanos , Voo Espacial
7.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936443

RESUMO

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Assuntos
Modelos Biológicos , Plasma Rico em Plaquetas/metabolismo , Ausência de Peso , Cicatrização , Animais , Contagem de Células , Movimento Celular/genética , Colágeno/metabolismo , Elasticidade , Regulação da Expressão Gênica , Sanguessugas/fisiologia , Camundongos , Células NIH 3T3 , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Lasers Med Sci ; 32(8): 1835-1846, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752263

RESUMO

Over the past three decades, physicians have used laser sources for the management of different pain conditions obtaining controversial results that call for further investigations. In order to evaluate the pain relieving possibilities of photobiomodulation therapy (PBMT), we tested two near infrared (NIR) laser systems, with different power, against various kinds of persistent hyperalgesia animal models. In rats, articular pain was reproduced by the intra-articular injection of sodium monoiodoacetate (MIA) and complete Freund's adjuvant (CFA), while compressive neuropathy was modelled by the chronic constriction injury of the sciatic nerve (CCI). In MIA and CFA models, (NIR) laser (MLS-Mphi, ASA S.r.l., Vicenza, Italy) application was started 14 days after injury and was performed once a day for a total of 13 applications. In MIA-treated animals, the anti-hyperalgesic effect of laser began 5 min after treatment and vanished after 60 min. The subsequent applications evoked similar effects. In CFA-treated rats, laser efficacy started 5 min after treatment and disappeared after 180 min. In rats that underwent CCI, two treatment protocols with similar fluence but different power output were tested using a new experimental device called Multiwave Locked System laser (MLS-HPP). Treatments began 7 days after injury and were performed during 3 weeks for a total of 10 applications. Both protocols reduced mechanical hyperalgesia and hindlimb weight bearing alterations until 60 min after treatment with a higher efficacy recorded for the animals treated using the higher power output. In conclusion, this study supports laser therapy as a potential treatment for immediate relief of chronic articular or neuropathic pain.


Assuntos
Raios Infravermelhos , Lasers , Terapia com Luz de Baixa Intensidade/métodos , Dor/radioterapia , Animais , Modelos Animais de Doenças , Adjuvante de Freund , Inflamação/complicações , Inflamação/patologia , Injeções Intra-Articulares , Ácido Iodoacético , Masculino , Neuralgia/induzido quimicamente , Neuralgia/radioterapia , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 18(12)2017 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-29207508

RESUMO

To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL, FADD, CASP3, CASP8, CASP10, BAX, BCL2, CYC1, APAF1, LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5, CASP9, and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2, BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed methods defining analytical protocols proved to be applicable for post-flight analyzes of tissue specimens after sample return.


Assuntos
Apoptose/fisiologia , Cicatrização/fisiologia , Animais , Apoptose/genética , Caspase 3/metabolismo , Derme/metabolismo , Epiderme/metabolismo , Matriz Extracelular/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Pele/metabolismo , Cicatrização/genética
10.
Electromagn Biol Med ; 35(4): 343-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27254779

RESUMO

Extremely low-frequency electromagnetic fields (ELF-EMFs) applied in magnetotherapy have frequency lower than 100 Hz and magnetic field intensity ranging from 0.1 to 20 mT. For many years, the use of magnetotherapy in clinics has been increasing because of its beneficial effects in many processes, e.g., skin diseases, inflammation and bone disorders. However, the understanding of the microscopic mechanisms governing such processes is still lacking and the results of the studies on the effects of ELF-EMFs are controversial because effects derive from different conditions and from intrinsic responsiveness of different cell types.In the present study, we studied the biological effects of 1.5 h exposure of human dermal fibroblasts to EMFs with frequencies of 5 and 50 Hz and intensity between 0.25 and 1.6 mT. Our data showed that the magnetic treatment did not produce changes in cell viability, but gave evidence of a sizeable decrease in proliferation at 24 h after treatment. In addition, immunofluorescence experiments displayed an increase in tubulin expression that could foreshadow changes in cell motility or morphology. The decrease in proliferation with unchanged viability and increase in tubulin expression could be consistent with the triggering of a transdifferentiation process after the exposure to ELF-EMFs.


Assuntos
Campos Eletromagnéticos , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Pele/citologia , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Humanos
11.
Animals (Basel) ; 14(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540004

RESUMO

Photobiomodulation (PBM) is a newly adopted consensus term to replace the therapeutic application of low-level laser therapy. It has been suggested that PMB influences the microbiome which, in turn, has increasingly been shown to be linked with health and disease. Even though the use of PBM has also grown dramatically in veterinary medicine, there is still a lack of evidence supporting its effect in vivo. Our objective was to investigate the impact of a dual-wavelength near-infrared laser source (Multiwavelength Locked Laser System, MLS®) on the skin microbiome in atopic dogs. Twenty adult-client-owned atopic dogs were enrolled in the study. The dogs were treated with MLS® laser therapy on one half of the abdominal region, whereas the contralateral side was left untreated and served as a control. Skin microbiome samples were collected before and after MLS® treatments, and then subjected to NGS-based ITS and 16S rRNA analysis. The results showed that while microbiome composition and diversity were not significantly affected, PBM could play a role in modulating the abundance of specific bacterial species, in particular Staphylococcus, that represent a major skin pathogenic strain. To the best of the authors' knowledge, this is the first study to investigate the potential impact of MLS® laser therapy on the skin microbiome in atopic dogs.

12.
Stem Cell Res Ther ; 15(1): 20, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233961

RESUMO

BACKGROUND: The glomerulus is a highly complex system, composed of different interdependent cell types that are subjected to various mechanical stimuli. These stimuli regulate multiple cellular functions, and changes in these functions may contribute to tissue damage and disease progression. To date, our understanding of the mechanobiology of glomerular cells is limited, with most research focused on the adaptive response of podocytes. However, it is crucial to recognize the interdependence between podocytes and parietal epithelial cells, in particular with the progenitor subset, as it plays a critical role in various manifestations of glomerular diseases. This highlights the necessity to implement the analysis of the effects of mechanical stress on renal progenitor cells. METHODS: Microgravity, modeled by Rotary Cell Culture System, has been employed as a system to investigate how renal progenitor cells respond to alterations in the mechanical cues within their microenvironment. Changes in cell phenotype, cytoskeleton organization, cell proliferation, cell adhesion and cell capacity for differentiation into podocytes were analyzed. RESULTS: In modeled microgravity conditions, renal progenitor cells showed altered cytoskeleton and focal adhesion organization associated with a reduction in cell proliferation, cell adhesion and spreading capacity. Moreover, mechanical forces appeared to be essential for renal progenitor differentiation into podocytes. Indeed, when renal progenitors were exposed to a differentiative agent in modeled microgravity conditions, it impaired the acquisition of a complex podocyte-like F-actin cytoskeleton and the expression of specific podocyte markers, such as nephrin and nestin. Importantly, the stabilization of the cytoskeleton with a calcineurin inhibitor, cyclosporine A, rescued the differentiation of renal progenitor cells into podocytes in modeled microgravity conditions. CONCLUSIONS: Alterations in the organization of the renal progenitor cytoskeleton due to unloading conditions negatively affect the regenerative capacity of these cells. These findings strengthen the concept that changes in mechanical cues can initiate a pathophysiological process in the glomerulus, not only altering podocyte actin cytoskeleton, but also extending the detrimental effect to the renal progenitor population. This underscores the significance of the cytoskeleton as a druggable target for kidney diseases.


Assuntos
Nefropatias , Podócitos , Ausência de Peso , Humanos , Citoesqueleto/metabolismo , Rim , Nefropatias/metabolismo , Células-Tronco/metabolismo
13.
Blood ; 117(15): 3983-95, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21304102

RESUMO

CD133 is a hallmark of primitive myeloid progenitors. We have addressed whether human cord blood cells selected for CD133 can generate dendritic cells, and Langerhans cells in particular, in conditions that promote that generation from CD34(+) progenitors. Transforming growth factor-ß1 (TGF-ß1) and anti-TGF-ß1 antibody, respectively, were added in some experiments. With TGF-ß, monocytoid cells were recognized after 7 days. Immunophenotypically immature dendritic cells were present at day 14. After 4 more days, the cells expressed CD54, CD80, CD83, and CD86 and were potent stimulators in mixed lymphocyte reaction; part of the cells expressed CD1a and langerin, but not Birbeck granules. Without TGF-ß, only a small fraction of cells acquired a dendritic shape and expressed the maturation-related antigens, and lymphocytes were poorly stimulated. With anti-TGF-ß, the cell growth was greatly hampered, CD54 and langerin were never expressed, and lymphocytes were stimulated weakly. In conclusion, CD133(+) progenitors can give rise in vitro, through definite steps, to mature, immunostimulatory dendritic cells with molecular features of Langerhans cells, although without Birbeck granules. Addition of TGF-ß1 helps to stimulate cell growth and promotes the acquisition of mature immunophenotypical and functional features. Neither langerin nor Birbeck granules proved indispensable for lymphocyte stimulation.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Ativação Linfocitária/imunologia , Peptídeos/metabolismo , Antígeno AC133 , Apoptose/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Grânulos Citoplasmáticos/ultraestrutura , Células Dendríticas/citologia , Retículo Endoplasmático/ultraestrutura , Feminino , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/ultraestrutura , Humanos , Imunofenotipagem , Corpos de Inclusão/ultraestrutura , Microscopia Eletrônica
14.
Front Bioeng Biotechnol ; 10: 958381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267456

RESUMO

Wound healing (WH) and the role fibroblasts play in the process, as well as healing impairment and fibroblast dysfunction, have been thoroughly reviewed by other authors. We treat these topics briefly, with the only aim of contextualizing the true focus of this review, namely, the microgravity-induced changes in fibroblast functions involved in WH. Microgravity is a condition typical of spaceflight. Studying its possible effects on fibroblasts and WH is useful not only for the safety of astronauts who will face future interplanetary space missions, but also to help improve the management of WH impairment on Earth. The interesting similarity between microgravity-induced alterations of fibroblast behavior and fibroblast dysfunction in WH impairment on Earth is highlighted. The possibility of using microgravity-exposed fibroblasts and WH in space as models of healing impairment on Earth is suggested. The gaps in knowledge on fibroblast functions in WH are analyzed. The contribution that studies on fibroblast behavior in weightlessness can make to fill these gaps and, consequently, improve therapeutic strategies is considered.

15.
Front Bioeng Biotechnol ; 10: 873384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573226

RESUMO

Wound healing is slowed in Space. Microgravity and possible physical factors associated with Space affect alterations in fibroblast, matrix formation, dysregulation in apoptosis and inflammation. The microbial populations settled on skin, space modules, in space suits, are also playing a pivotal role, as wound healing is also affected by the microbial community. We propose a perspective that includes four domines for the application of human skin microbiota for wound healing in Space: The natural antimicrobial properties of the skin microbiota, the crosstalk of the skin microbiota with the immune system during wound healing, the contribution of the microbiota in precision medicine, and the role of gut-skin and gut-brain axes. A stronger understanding of the connections and metabolic network among bacteria, fungi, the host's immune system and the host metabolism will support the basis for a better wound healing in Space.

16.
Br J Pharmacol ; 179(11): 2538-2557, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35170019

RESUMO

As human spaceflight progresses with extended mission durations, the demand for effective and safe drugs will necessarily increase. To date, the accepted medications used during missions (for space motion sickness, sleep disturbances, allergies, pain, and sinus congestion) are administered under the assumption that they act as safely and efficaciously as on Earth. However, physiological changes have been documented in human subjects in spaceflight involving fluid shifts, muscle and bone loss, immune system dysregulation, and adjustments in the gastrointestinal tract and metabolism. These alterations may change the pharmacokinetics (PK) and pharmacodynamics of commonly used medications. Frustratingly, the information gained from bed rest studies and from in-flight observations is incomplete and also demonstrates a high variability in drug PK. Therefore, the objectives of this review are to report (i) the impact of the space environmental stressors on human physiology in relation to PK; (ii) the state-of-the-art on experimental data in space and/or in ground-based models; (iii) the validation of ground-based models for PK studies; and (iv) the identification of research gaps.


Assuntos
Voo Espacial , Ausência de Peso , Adaptação Fisiológica , Repouso em Cama , Humanos
17.
Cell Mol Life Sci ; 67(21): 3711-23, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20496097

RESUMO

Glucagon-like peptide-1 (GLP-1) is an insulinotropic peptide with neurotrophic properties, as assessed in animal cell models. Exendin-4, a GLP-1 analogue, has been recently approved for the treatment of type 2 diabetes mellitus. The aim of this study was to morphologically, structurally, and functionally characterize the differentiating actions of exendin-4 using a human neuronal cell model (i.e., SH-SY5Y cells). We found that exendin-4 increased the number of neurites paralleled by dramatic changes in intracellular actin and tubulin distribution. Electrophysiological analyses showed an increase in cell membrane surface and in stretch-activated-channels sensitivity, an increased conductance of Na(+) channels and amplitude of Ca(++) currents (T- and L-type), typical of a more mature neuronal phenotype. To our knowledge, this is the first demonstration that exendin-4 promotes neuronal differentiation in human cells. Noteworthy, our data support the claimed favorable role of exendin-4 against diabetic neuropathy as well as against different neurodegenerative diseases.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Peptídeos/farmacologia , Peçonhas/farmacologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/ultraestrutura , Linhagem Celular , Citoesqueleto/ultraestrutura , Exenatida , Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Tretinoína/farmacologia , Tubulina (Proteína)/ultraestrutura
18.
J Inflamm Res ; 14: 965-979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776469

RESUMO

PURPOSE: Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS: We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS: PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION: PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.

19.
Biomedicines ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809724

RESUMO

The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1ß and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5ß1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1ß and TNF-α, likely responsible for a deleterious effect of persistent inflammation.

20.
Mol Neurobiol ; 58(10): 5383-5395, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319540

RESUMO

Brain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia. Hippocampal slices were exposed to oxygen and glucose deprivation (OGD) for 30 min followed by NIR laser light (fluence 3.71, 7.42, or 14.84 J/cm2; wavelengths 808 nm and 905 nm) delivered immediately or 30 min or 60 min after OGD, in order to establish a therapeutic window. Neuronal injury was assessed by propidium iodide fluorescence 24 h later. Our results show that NIR laser irradiation attenuates OGD neurotoxicity once applied immediately or 30 min after OGD. Western blot analysis of proteins involved in neuroinflammation (iNOS, COX-2, NFkB subunit p65, and Bcl-2) and in glutamatergic-mediated synaptic activity (vGluT1, EAAT2, GluN1, and PSD95) showed that the protein modifications induced by OGD were reverted by NIR laser application. Moreover, CA1 confocal microscopy revealed that the profound morphological changes induced by OGD were reverted by NIR laser radiation. In conclusion, NIR laser radiation attenuates OGD neurotoxicity in organotypic hippocampal slices through attenuation of inflammatory mechanisms. These findings shed light on molecular definition of NIR neuroprotective mechanisms, thus underlining the potential benefit of this technique for the treatment of cerebral ischemia.


Assuntos
Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Terapia a Laser/métodos , Terapia com Luz de Baixa Intensidade/métodos , Neuroproteção/fisiologia , Animais , Feminino , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Microscopia de Fluorescência/métodos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA