Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819476

RESUMO

The urinary mercapturic acids N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) are short-term biomarkers of exposure from acrylamide and its metabolite glycidamide, respectively. The medium-term exposure to acrylamide and glycidamide is monitored by the adducts N-(2-carbamoylethyl)-Val (AA-Val) and N-(2-carbamoyl-2-hydroxyethyl)-Val (GA-Val) in hemoglobin (Hb), respectively. Three questions were addressed by application of these biomarkers in two diet studies including 36 omnivores, 36 vegans and 16 strict raw food eaters (abstaining from any warmed or heated food for at least four months): first, what is the internal acrylamide exposure following a vegan or a raw food diet in comparison to that in omnivores? Second, did the exposure change between 2017 and 2021? And third, what is the stability over time of AAMA/GAMA excretion compared to that of AA-Val/GA-Val levels in Hb between both time points? Median urinary AAMA excretion per day in non-smoking omnivores, vegans and raw food eaters were 62.4, 85.4 and 15.4 µg/day, respectively; the corresponding median AA-Val levels were 27.7, 39.7 and 13.3 pmol/g Hb, respectively. Median levels in strict raw food eaters were about 25% (AAMA excretion) and 48% (AA-Val) of those in omnivores. In comparison to 2017, AAMA and GAMA excretion levels were hardly altered in 2021, however, levels of AA-Val and GA-Val in 2021 slightly increased. There was a weak correlation between AAMA excretion levels determined four years apart (rS = 0.30), and a moderate correlation between levels of AA-Val (rS = 0.55) in this timeframe. Our data in strict raw food eaters confirm a significant endogenous formation to acrylamide in a size range, which is-based on the levels of AA-Val-distinctly higher than reported previously based on levels of urinary AAMA excretion. The relatively lower AAMA excretion in raw food eaters likely represents a lower extent of glutathione conjugation due to missing hepatic first-pass metabolism in case of endogenous formation of acrylamide, which leads to a higher systemic exposure.

2.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875262

RESUMO

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Assuntos
Acetilcisteína , Ocimum basilicum , Animais , Humanos , Acetilcisteína/urina , Carcinógenos , Roedores , Cromatografia Líquida , Adutos de DNA , Espectrometria de Massas em Tandem
3.
Anal Bioanal Chem ; 415(24): 5925-5938, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606646

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Studying the bioaccumulation in mammalian tissues requires a considerable effort for the PFAS extraction from complex biological matrices. The aim of the current work was to select and optimize the most efficient among common extraction strategies for eleven perfluoroalkyl acids (PFAA). Primary extractions from wild boar tissues (liver, kidney, and lung) were performed with methanol at neutral, acidic, or alkaline conditions, or with methyl-tert-butyl ether (MTBE) after ion-pairing with tetrabutylammonium (TBA) ions. A second purification step was chosen after comparing different solid-phase extraction (SPE) cartridges (Oasis WAX, ENVI-Carb, HybridSPE Phospholipid) and various combinations thereof or dispersive SPE with C18 and ENVI-Carb material. The best extraction efficiencies of the liquid PFAA extraction from tissue homogenates were achieved with methanol alone (recoveries from liver 86.6-114.4%). Further purification of the methanolic extracts using dispersive SPE or Oasis WAX columns decreased recoveries of most PFAA, whereas using pairs of two SPE columns connected in series proved to be more efficient albeit laborious. Highest recoveries for ten out of eleven PFAA were achieved using ENVI-Carb columns (80.3-110.6%). In summary, the simplest extraction methods using methanol and ENVI-Carb columns were also the most efficient. The technique was validated and applied in a proof of principle analysis in human tissue samples.


Assuntos
Fluorocarbonos , Metanol , Animais , Humanos , Extração em Fase Sólida/métodos , Fígado/química , Mamíferos , Fluorocarbonos/análise
4.
Eur J Nutr ; 62(1): 433-441, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36087137

RESUMO

PURPOSE: Dietary biomarkers can potentially overcome the limitations of self-reported dietary data. While in ecology and archaeology, stable isotope ratios of carbon and nitrogen are widely used as biomarkers, this is not the case in nutrition research. Since the abundance of the 13C and the 15N isotope differ in food sources from plant and animal origin, stable isotope ratios of carbon and nitrogen (δ13C and δ15N) may differ in human biological material. Here, we investigated the stable isotope ratios of nitrogen and carbon in serum and urine from vegans and omnivores. METHOD: Measurement of δ15N and δ13C in serum and 24 h urine was performed by Elemental Analyzer-Isotope Ratio Mass Spectrometer in the cross-sectional study "Risks and Benefits of a Vegan Diet". The study included 36 vegans and 36 omnivores with a median age of 37.5 years (matched for age and sex), who adhered to their diet for at least 1 year. RESULTS: Both δ15N and δ13C were significantly lower in both the serum and 24 h urine of vegans compared to omnivores. δ15N either in serum or urine had 100% specificity and sensitivity to discriminate between vegans and omnivores. Specificity of δ13C was also > 90%, while sensitivity was 93% in serum and 77% in urine. CONCLUSION: δ15N both in serum and urine was able to accurately identify vegans and thus appears to be a promising marker for dietary habits.


Assuntos
Carbono , Nitrogênio , Animais , Humanos , Adulto , Dieta Vegana , Estudos Transversais , Isótopos de Carbono , Isótopos de Nitrogênio , Dieta , Biomarcadores
5.
Anal Bioanal Chem ; 414(19): 5805-5815, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35655100

RESUMO

Various genotoxic carcinogens ubiquitously present in the human environment or respective reactive metabolites form adducts in DNA and proteins, which can be used as biomarkers of internal exposure. For example, the mass spectrometric determination of Val adducts at the N-termini of hemoglobin (Hb) peptide chains after cleavage by an Edman degradation has a long tradition in occupational medicine. We developed a novel isotope-dilution UHPLC-MS/MS method for the simultaneous quantification of Val adducts of eight genotoxic substances in Hb after cleavage with fluorescein-5-isothiocyanate (FIRE procedure™). The following adducts were included [sources in square brackets]: N-(2,3-dihydroxypropyl)-Val [glycidol], N-(2-carbamoylethyl)-Val [acrylamide], N-(2-carbamoyl-2-hydroxyethyl)-Val [glycidamide], N-((furan-2-yl)methyl)-Val [furfuryl alcohol], N-(trans-isoestragole-3'-yl)-Val [estragole/anethole], N-(3-ketopentyl)-Val [1-penten-3-one], N-(3-ketooctanyl)-Val [1-octene-3-one], and N-benzyl-Val [benzyl chloride], each of which was quantified with a specific isotope-labeled standard. The limits of quantification were between 0.014 and 3.6 pmol/g Hb (using 35 mg Hb per analysis); other validation parameters were satisfactory according to guidelines of the U.S. Food and Drug Administration. The quantification in erythrocyte samples of human adults (proof of principle) showed that the median levels of Hb adducts of acrylamide, glycidamide, and glycidol were found to be significantly lower in six non-smokers (25.9, 12.2, and 4.7 pmol/g Hb, respectively) compared to those of six smokers (69.0, 44.2, and 8.6 pmol/g Hb, respectively). In summary, the method surpasses former techniques of Hb adduct quantification due to its simplicity, sensitivity, and accuracy. It can be extended continuously with other Hb adducts and will be used in epidemiological studies on internal exposure to carcinogens.


Assuntos
Hemoglobinas , Espectrometria de Massas em Tandem , Acrilamida , Adulto , Carcinógenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Dano ao DNA , Hemoglobinas/análise , Humanos , Isótopos , Espectrometria de Massas em Tandem/métodos
6.
Chem Res Toxicol ; 32(11): 2260-2267, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31565931

RESUMO

Fennel and other herbs contain the secondary plant metabolites estragole and trans-anethole, of which estragole is carcinogenic in rodents. It is metabolically activated by cytochrome P450-catalyzed conversion to 1'-hydroxyestragole and subsequent sulfo conjugation to the genotoxic 1'-sulfoxyestragole. The current study followed the hypothesis that the reactive sulfate ester may be detoxified by glutathione conjugation, leading to the urinary excretion of a resultant mercapturic acid. We identified the assumed downstream metabolite N-acetyl-S-[3'-(4-methoxyphenyl)allyl]-l-Cys (AMPAC) in human urine samples after consumption of fennel tea. An isotope-dilution technique for its quantification by ultraperformance liquid chromatography-tandem mass spectrometry and [13C3,15N]AMPAC in urine samples was developed. The method was applied to determine the AMPAC concentration in urine samples following uptake of 500 mL of fennel tea containing 2.2 mg of estragole by 12 healthy participants (six females and six males). Before drinking the tea, the urinary AMPAC concentration was below the limit of detection. In most of the participants, the highest amounts of urinary AMPAC were found in the first-hour urine after exposure. The excretion by first-order kinetics (range of t1/2 = 0.78-1.54 h; mean ± SD: 1.13 ± 0.21 h) led to a nearly complete clearance within 8 h in all participants. The total AMPAC excreted was in the range of 93-1076 ng, reflecting pronounced interindividual variations of enzymes taking part in estragole metabolism. Importantly, AMPAC was also formed in one volunteer following oral uptake of a single dose of isolated trans-anethole, albeit to a much smaller extent compared to estragole. AMPAC may be of future use as a human biomarker for the internal exposure to the carbocation formed from either 1'-sulfoxyestragole or 3'-sulfoxyisoestragole, the reactive sulfate ester metabolites of estragole and trans-anethole, respectively.


Assuntos
Acetilcisteína/análogos & derivados , Acetilcisteína/urina , Anisóis/farmacocinética , Foeniculum , Chá , Adulto , Derivados de Alilbenzenos , Feminino , Frutas , Humanos , Masculino , Pessoa de Meia-Idade
7.
Adv Exp Med Biol ; 1140: 743-751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347082

RESUMO

The formation of DNA adducts is considered essential for tumor initiation. Quantification of DNA adducts may be achieved by various techniques of which LC-MS/MS-based multiple reaction monitoring has become the most prominent in the past decade. Adducts of single nucleosides are analyzed following enzymatic break-down of a DNA sample following adduct enrichment usually by solid-phase extraction. LC-MS/MS quantification is carried out using stable isotope-labeled internal reference substances. An upcoming challenge is the use of DNA adducts as biomarkers either for internal exposure to electrophilic genotoxins or for the approximation of cancer risk. Here we review recent studies in which DNA adducts were quantified by LC-MS/MS in DNA samples from human matrices. We outline a possible way for future research to aim at the development of an 'adductome' approach for the characterization of DNA adduct spectra in human tissues. The DNA adduct spectrum reflects the inner exposure of an individual's tissue to electrophilic metabolites and, therefore, should replace the conventional and inaccurate external exposure in epidemiological studies in the future.


Assuntos
Adutos de DNA , Neoplasias/genética , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Epidemiologia Molecular
8.
Nucleic Acids Res ; 44(21): 10259-10276, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27599846

RESUMO

PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs.


Assuntos
Carcinógenos/toxicidade , Instabilidade Cromossômica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Imidazóis/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Aberrações Cromossômicas , Cricetinae , Adutos de DNA , Quebras de DNA de Cadeia Dupla , Receptores com Domínio Discoidina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos
10.
Arch Toxicol ; 91(12): 3843-3855, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597227

RESUMO

Furfuryl alcohol is a common food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. Its carcinogenic effect in rodents originates most likely from sulfotransferase (SULT)-catalyzed conversion into the mutagenic sulfate ester 2-sulfoxymethylfuran. In this study, a protein adduct biomarker was sought for the medium-term internal exposure to furfuryl alcohol. A UPLC-MS/MS screening showed that the adduct N-((furan-2-yl)methyl)-Val (FFA-Val) at the N-terminus of hemoglobin is a valid target analyte. The Val cleavage by fluorescein isothiocyanate-mediated Edman degradation yielded 3-fluorescein-1-(furan-2-ylmethyl)-5-(propan-2-yl)-2-thioxoimidazolidin-4-one (FFA-Val-FTH), which was characterized by 1H and 13C NMR spectroscopy. An isotope-dilution method for the quantification of FFA-Val-FTH by UPLC-MS/MS was developed. It was used to study the adduct formation in furfuryl alcohol-treated FVB/N mice and the influence of ethanol and the alcohol dehydrogenase (ADH) inhibitor 4-methylpyrazole on the adduct levels. The administration of 400 mg/kg body weight furfuryl alcohol alone led to 12.5 and 36.7 pmol FFA-Val/g Hb in blood samples of male and female animals, respectively. The co-administration of 1.6 g ethanol/kg body weight increased FFA-Val levels by 1.4-fold in males and by 1.5-fold in females. The co-administration of 100 mg 4-methylpyrazole/kg body weight had a similar effect on the adduct levels. A high correlation was observed between adduct levels in hemoglobin and in hepatic DNA samples determined in the same animal experiment. This indicated that FFA-Val is a valid biomarker for the internal exposure to 2-sulfoxymethylfuran, which may be suitable to monitor furfuryl alcohol exposure also in humans.


Assuntos
Biomarcadores/sangue , Furanos/toxicidade , Hemoglobinas/química , Animais , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Furanos/química , Furanos/metabolismo , Hemoglobinas/análise , Masculino , Camundongos Endogâmicos , Espectrometria de Massas em Tandem , Valina/química
11.
Carcinogenesis ; 37(3): 314-319, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26775039

RESUMO

Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans.


Assuntos
Arilsulfotransferase/metabolismo , Etanol/toxicidade , Furanos/toxicidade , Pirazóis/toxicidade , Animais , Cromatografia Líquida , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Fomepizol , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Mutagênicos/toxicidade , Espectrometria de Massas em Tandem
12.
Arch Toxicol ; 90(1): 137-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25370010

RESUMO

5-Hydroxymethylfurfural (HMF) and furfuryl alcohol (FFA) are moderately potent rodent carcinogens that are present in thermally processed foodstuffs. The carcinogenic effects were hypothesized to originate from sulfotransferase (SULT)-mediated bioactivation yielding DNA-reactive and mutagenic sulfate esters, a confirmed metabolic pathway of HMF and FFA in mice. It is known that orthologous SULT forms substantially differ in substrate specificity and tissue distribution. This could influence HMF- and FFA-induced carcinogenic effects. Here, we studied HMF and FFA sulfoconjugation by 30 individual SULT forms of humans, mice and rats. The catalytic efficiencies (k cat/K M) of HMF sulfoconjugation of human SULT1A1 (13.7 s(-1) M(-1)), mouse Sult1a1 (15.8 s(-1) M(-1)) and 1d1 (4.8 s(-1) M(-1)) and rat Sult1a1 (5.3 s(-1) M(-1)) were considerably higher than those of all other SULT forms investigated (≤0.73 s(-1 )M(-1)). FFA sulfoconjugation was monitored using adenosine as a nucleophilic scavenger for the reactive 2-sulfoxymethylfuran (t 1/2 = 20 s at 37 °C). The resulting adduct N (6)-((furan-2-yl)methyl)-adenosine (N (6)-MF-A) was quantified by isotope-dilution UPLC-MS/MS. The rates of N (6)-MF-A formation showed that hSULT1A1 and its orthologues in mice and rats were also the most important contributors to FFA sulfoconjugation in each of the species. Taken together, the catalytic capacity of hSULT1A1 is comparable to that of mSult1a1 in mice, the species in which carcinogenic effects of HMF and FFA were detected. This is of primary concern due to the expression of hSULT1A1 in many different tissues.


Assuntos
Arilsulfotransferase/metabolismo , Carcinógenos/metabolismo , Contaminação de Alimentos , Furaldeído/análogos & derivados , Furanos/metabolismo , Ativação Metabólica , Carcinógenos/toxicidade , Catálise , Cromatografia Líquida , Furaldeído/metabolismo , Furaldeído/toxicidade , Furanos/toxicidade , Humanos , Isoenzimas , Cinética , Proteínas Recombinantes/metabolismo , Medição de Risco , Especificidade da Espécie , Espectrometria de Massas em Tandem
13.
Anal Chem ; 87(1): 641-8, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25423194

RESUMO

Recent studies have demonstrated that various DNA adducts can be detected in human tissues and fluids using liquid chromatography connected to tandem mass spectrometry (LC-MS/MS). However, the utility of a single DNA adduct as a biomarker in risk assessment is debatable because humans are exposed to many genotoxicants. We established a method to measure DNA adducts derived from 16 ubiquitous genotoxicants and developed an analytical technique for their simultaneous quantification by ultra performance liquid chromatography (UPLC)-MS/MS. Methods for the enrichment of the analytes from DNA hydrolysates and chromatographic separation preceding mass spectrometric analysis were optimized, and the resultant technique was used for the simultaneous analysis of the 16 DNA adducts in human lung biopsy specimens. Eleven adducts (formed by benzo[a]pyrene, 1-methylpyrene, 4-aminobiphenyl, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 1-methoxy-3-indolylmethylglucosinolate, 5-hydroxymethylfurfural, and malondialdehyde) were not detected in any tissue sample (limits of detection: 0.02-7.1 adducts/10(8) nucleosides). 3,N(4)-etheno-2'-deoxycytidine and 1,N(6)-etheno-2'-deoxyadenosine, formed from 2,3-epoxyaldehydes of endogenous lipid peroxidation products, were present in all subjects (16.9-115.3 and 27.2-179/10(8) nucleosides, respectively). The same was true for N(2)-(trans-methylisoeugenol-3'-yl)-2'-deoxyguanosine, the major adduct of methyleugenol (1.7-23.7/10(8) nucleosides). A minor adduct of methyleugenol and two adducts of furfuryl alcohol were detected in several pulmonary specimens. Taken together, we developed a targeted approach for the simultaneous mass spectrometric analyses of 16 DNA adducts, which can be easily extended by adducts formed from other mutagens. The method allowed one to detect adducts of furfuryl alcohol and methyleugenol in samples of human lung.


Assuntos
Cromatografia Líquida/métodos , Adutos de DNA/análise , Adutos de DNA/química , Pulmão/metabolismo , Espectrometria de Massas em Tandem/métodos , Humanos , Técnicas de Diluição do Indicador
14.
Carcinogenesis ; 35(10): 2339-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053625

RESUMO

Furfuryl alcohol is a rodent carcinogen present in numerous foodstuffs. Sulfotransferases (SULTs) convert furfuryl alcohol into the DNA reactive and mutagenic 2-sulfoxymethylfuran. Sensitive techniques for the isotope-dilution ultra performance liquid chromatography-tandem mass spectrometry quantification of resulting DNA adducts, e.g. N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were developed. To better understand the contribution of specific SULT forms to the genotoxicity of furfuryl alcohol in vivo, we studied the tissue distribution of N (2)-MF-dG in different mouse models. Earlier mutagenicity studies with Salmonella typhimurium strains expressing different human and murine SULT forms indicated that human SULT1A1 and murine Sult1a1 and 1d1 catalyze furfuryl alcohol sulfo conjugation most effectively. Here, we used three mouse lines to study the bioactivation of furfuryl alcohol by murine SULTs, FVB/N wild-type (wt) mice and two genetically modified models lacking either murine Sult1a1 or Sult1d1. The animals received a single dose of furfuryl alcohol, and the levels of the DNA adducts were determined in liver, kidney, lung, colon and small intestine. The effect of Sult1d1 gene disruption on the genotoxicity of furfuryl alcohol was moderate and limited to kidney and small intestine. In contrast, the absence of functional Sult1a1 had a massive influence on the adduct levels, which were lowered by 33-73% in all tissues of the female Sult1a1 null mice compared with the wt animals. The detection of high N (2)-MF-dG levels in a humanized mouse line expressing hSULT1A1/1A2 instead of endogeneous Sult1a1 and Sult1d1 supports the hypothesis that furfuryl alcohol is converted to the mutagenic 2-sulfoxymethylfuran also in humans.


Assuntos
Arilsulfotransferase/genética , Adutos de DNA/farmacocinética , Furanos/toxicidade , Sulfotransferases/genética , Animais , Arilsulfotransferase/metabolismo , Feminino , Furanos/farmacocinética , Humanos , Inativação Metabólica , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Sulfotransferases/metabolismo , Ésteres do Ácido Sulfúrico/farmacocinética , Espectrometria de Massas em Tandem , Distribuição Tecidual
15.
Chem Res Toxicol ; 27(2): 188-99, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24422435

RESUMO

1-Methoxy-3-indolylmethyl (1-MIM) glucosinolate (GLS) occurring in cabbage, broccoli, and other cruciferous plants is a potent mutagen requiring metabolic activation by myrosinase present in plant cells and intestinal bacteria. We previously reported that 1-MIM-GLS and its alcoholic breakdown product 1-MIM-OH, which requires additional activation by sulfotransferases, form DNA adducts in mice. In the present study, the formation of protein adducts was investigated. First, two major adducts obtained after incubation of individual amino acids, serum albumin, or hemoglobin with 1-MIM-GLS in the presence of myrosinase were identified as τN-(1-MIM)-His and πN-(1-MIM)-His using MS and NMR spectroscopy. After the development of a specific detection method using isotope-dilution UPLC-ESI-MS/MS, adduct formation was confirmed in mice after oral treatment with 1-MIM-GLS. Adduct levels were highest in the cecum and colon, somewhat lower in serum albumin and the liver, and also readily detectable in the lung and hemoglobin. On the contrary, oral treatment with 1-MIM-OH produced the highest adduct levels in the liver. The higher ratio of albumin to hemoglobin adducts in 1-MIM-OH- compared to 1-MIM-GLS-treated animals (8.1 versus 3.5) suggests that in 1-MIM-OH-treated animals albumin adducts were produced mostly in the liver, the site of albumin synthesis. The formation of adducts was approximately linear over a range of single oral doses from 20 to 600 µmol/kg body mass. Repeated oral administration of 1-MIM-OH (up to 40 treatments, thrice per week) led to continuous accumulation of hemoglobin adducts, whereas the level of serum albumin adducts remained rather constant, which reflects the different turnover rates of these proteins (t1/2 nearly 1.9 d for serum albumin and 25 d for hemoglobin in the mouse). Accumulation of adducts was also noticed in the lung. Adduct levels were higher, but their accumulation was weaker in the liver and kidney. The method developed will be useful to assess the exposure of humans to reactive metabolites formed from 1-MIM-GLS present in many foods.


Assuntos
Aminoácidos/metabolismo , Glucosinolatos/farmacologia , Hemoglobinas/metabolismo , Indóis/farmacologia , Albumina Sérica/metabolismo , Animais , Arilsulfotransferase/genética , Biotransformação , Ceco/metabolismo , Colo/metabolismo , Glicosídeo Hidrolases/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
16.
Arch Toxicol ; 88(3): 815-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337722

RESUMO

The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analysed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo.


Assuntos
Carcinógenos/farmacologia , Adutos de DNA/química , Pirenos/química , Pirenos/farmacologia , Animais , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Carcinógenos/química , Desoxiadenosinas/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Feminino , Humanos , Inativação Metabólica , Masculino , Camundongos , Camundongos Transgênicos , Pirenos/sangue , Ratos , Ratos Wistar , Ácidos Sulfúricos/química
17.
Arch Toxicol ; 88(3): 823-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24154822

RESUMO

1-Methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary metabolite of Brassicales species, and its breakdown product 1-MIM alcohol are mutagenic in cells in culture after activation by plant ß-thioglucosidase and human sulphotransferase, respectively. In the present study, we administered these compounds orally to mice to study time course, dose dependence, tissue distribution and cellular localization of the 1-MIM DNA adducts formed. We used isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry to quantify the adducts and raised an antiserum for their immunohistochemical localization. Both compounds formed the same adducts, N(2)-(1-MIM)-2'-deoxyguanosine and N(6)-(1-MIM)-2'-deoxyadenosine, approximately in a 3.3:1 ratio. 1-MIM glucosinolate primarily formed these adducts in the large intestine, with a luminal-basal gradient, probably due to activation by thioglucosidase from intestinal bacteria. 1-MIM alcohol formed higher levels of adduct than the glucosinolate. Unlike after treatment with the glucosinolate, luminal and basal enterocytes were similarly affected in caecum, and liver and stomach were additional important target tissues. Maximal adduct levels were reached 8 h after the administration of both compounds. The hepatic DNA adducts persisted for the entire observation period (48 h), whereas those in large intestine rapidly declined due to cell turnover, as verified by immunohistochemistry. Hepatic adduct formation was focused on the periportal hepatocytes with concomitant depletion of glycogen, p53 activation and p21 induction. Adduct formation in caecum was associated with massive apoptosis, p53 activation and p21 induction, in particular after treatment with 1-MIM alcohol. It remains to be studied whether similar effects occur in humans after the consumption of Brassicales species.


Assuntos
Adutos de DNA/metabolismo , Glucosinolatos/química , Glucosinolatos/farmacocinética , Indóis/química , Indóis/metabolismo , Indóis/farmacocinética , Administração Oral , Animais , Brassicaceae/metabolismo , Ceco/efeitos dos fármacos , Ceco/patologia , Adutos de DNA/análise , Desoxiadenosinas/química , Relação Dose-Resposta a Droga , Glucosinolatos/administração & dosagem , Indóis/administração & dosagem , Intestino Grosso/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual , Proteína Supressora de Tumor p53/metabolismo
18.
Adv Exp Med Biol ; 806: 383-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24952193

RESUMO

The formation of DNA adducts is considered essential for tumor initiation. Quantification of DNA adducts may be achieved by various techniques of which LC-MS/MS-based multiple reaction monitoring has become the most prominent in the past decade. Adducts of single nucleosides are analyzed following enzymatic break-down of a DNA sample following adduct enrichment usually by solid-phase extraction. LC-MS/MS quantification is carried out using stable isotope-labeled internal reference substances. An upcoming challenge is the use of DNA adducts as biomarkers either for internal exposure to electrophilic genotoxins or for the approximation of cancer risk. Here we review recent studies in which DNA adducts were quantified by LC-MS/MS in DNA samples from human matrices. We outline a possible way for future research to aim at the development of an "adductome" approach for the characterization of DNA adduct spectra in human tissues. The DNA adduct spectrum reflects the inner exposure of an individual's tissue to electrophilic metabolites and, therefore, should replace the conventional and inaccurate external exposure in epidemiological studies in the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Adutos de DNA/metabolismo , DNA de Neoplasias/metabolismo , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Animais , Biomarcadores Tumorais/química , Adutos de DNA/química , DNA de Neoplasias/química , Humanos , Epidemiologia Molecular , Neoplasias/epidemiologia
19.
Int J Hyg Environ Health ; 249: 114142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842230

RESUMO

Biomarker measurements in spot urine are often adjusted for creatinine to control for dilution resulting from individual hydration. We here report on results of a study involving age- and sex-matched vegans and omnivores (n = 36 each). The daily urinary excretion of 2,3-dihydroxypropylmercapturic acid (DHPMA, a diet-independent endogenous C3-metabolite used as an example compound) was found not to be different in vegans and omnivores (median 433 µg/24 h each), however, creatinine-adjusted levels were 26% lower in omnivores (median 285 µg/g creatinine) than in vegans (median 383 µg/g creatinine, p = 0.003). This difference results from the higher urinary excretion of creatinine in the omnivores compared to vegans (median 1.51 vs. 1.21 g/24 h, p = 0.009). Linear regression showed - besides the fat-free mass - a significant impact of the factor diet (vegans vs. omnivores). This may be due to the consumption of meat and fish as exogenous sources of creatinine. A literature search revealed broad evidence for this interpretation, as creatinine is formed from creatine during heating of meat and fish. Accordingly, consumption leads to temporary increase of serum/plasma creatinine and urinary creatinine excretion, resulting in higher levels in omnivores compared to vegans/vegetarians. An adjustment of the urinary DHPMA concentrations using specific gravity revealed 13% lower values in omnivores (median 225 µg/L) than in vegans (median 260 µg/L, p = 0.07). Compared to creatinine-adjustment, adjustment for specific gravity introduces a smaller but still obvious difference between omnivores and vegans. Especially with respect to future studies comparing vegans, vegetarians and omnivores, researchers should be aware of the risks of severe misinterpretations if biomarker measurements in spot urine are adjusted for creatinine.


Assuntos
Dieta Vegetariana , Dieta , Animais , Humanos , Creatinina , Veganos , Biomarcadores
20.
Food Chem ; 403: 134332, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156403

RESUMO

3-Chloro-1,2-propanediol (3-MCPD) and its fatty acid esters (FE) are present as contaminants in different processed foods. Based on the available toxicological data the potential risk of 3-MCPD and its FE to human health was assessed by risk assessment authorities, including the European Food Safety Authority (EFSA). Considering the available data, EFSA concluded that 3-MCPD is a non-genotoxic compound exhibiting secondary carcinogenic effects in rodents. A tolerable daily intake of 2 µg/kg body weight and day was derived by EFSA for free and ester-bound 3-MCPD in 2018. However, there are still different pending issues that have remained unclear until now. Here, we summarize the current knowledge regarding 3-MCPD and its FE with a focus on pending issues regarding exposure assessment via biomarkers as well as the identification of (toxic) metabolites formed after exposure to FE of 3-MCPD and their modes of action.


Assuntos
alfa-Cloridrina , Humanos , alfa-Cloridrina/toxicidade , alfa-Cloridrina/análise , Ésteres/análise , Ácidos Graxos , Medição de Risco , Inocuidade dos Alimentos , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA