Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(4): 970-982, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461663

RESUMO

Long-chain (≥C20 ) polyunsaturated fatty acids (LC-PUFAs) are physiologically important fatty acids for most animals, including humans. Although most LC-PUFA production occurs in aquatic primary producers such as microalgae, recent research indicates the ability of certain groups of (mainly marine) invertebrates for endogenous LC-PUFA biosynthesis and/or bioconversion from dietary precursors. The genetic pathways for and mechanisms behind LC-PUFA biosynthesis remain unknown in many invertebrates to date, especially in non-model species. However, the numerous genomic and transcriptomic resources currently available can contribute to our knowledge of the LC-PUFA biosynthetic capabilities of metazoans. Within our previously generated transcriptome of the benthic harpacticoid copepod Platychelipus littoralis, we detected expression of one methyl-end desaturase, one front-end desaturase, and seven elongases, key enzymes responsible for LC-PUFA biosynthesis. To demonstrate their functionality, we characterized eight of them using heterologous expression in yeast. The P. littoralis methyl-end desaturase has Δ15/17/19 desaturation activity, enabling biosynthesis of α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (DHA) from 18:2 n-6, 20:4 n-6 and 22:5 n-6, respectively. Its front-end desaturase has Δ4 desaturation activity from 22:5 n-3 to DHA, implying that P. littoralis has multiple pathways to produce this physiologically important fatty acid. All studied P. littoralis elongases possess varying degrees of elongation activity for saturated and unsaturated fatty acids, producing aliphatic hydrocarbon chains with lengths of up to 30 carbons. Our investigation revealed a functionally diverse range of fatty acid biosynthesis genes in copepods, which highlights the need to scrutinize the role that primary consumers could perform in providing essential nutrients to upper trophic levels.


Assuntos
Ácido Eicosapentaenoico , Ácidos Graxos Insaturados , Humanos , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Genoma , Saccharomyces cerevisiae/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
2.
Fish Shellfish Immunol ; 143: 109212, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926203

RESUMO

The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 µmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.


Assuntos
Dourada , Animais , Dourada/metabolismo , NF-kappa B/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/veterinária , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol , Proteínas Serina-Treonina Quinases/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Apoptose , Inflamação/veterinária , Inflamação/metabolismo , Gorduras na Dieta/metabolismo , RNA Mensageiro/metabolismo , Estresse do Retículo Endoplasmático
3.
Fish Physiol Biochem ; 49(6): 1115-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855969

RESUMO

Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.


Assuntos
Perciformes , Dourada , Animais , Chaperona BiP do Retículo Endoplasmático , Dourada/genética , Betaína , DNA Complementar/genética , Perciformes/genética , Estresse do Retículo Endoplasmático , Fatores Ativadores da Transcrição/genética , Clonagem Molecular
4.
Funct Integr Genomics ; 22(4): 435-450, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35290539

RESUMO

Peroxisome proliferator-activated receptor γ (Pparγ) is a master regulator of adipogenesis. Chronic pathologies such as obesity, cardiovascular diseases, and diabetes involve the dysfunction of this transcription factor. Here, we generated a zebrafish mutant in pparγ (KO) with CRISPR/Cas9 technology and revealed its regulatory network. We uncovered the hepatic phenotypes of these male and female KO, and then the male wild-type zebrafish (WT) and KO were fed with a high-fat (HF) or standard diet (SD). We next conducted an integrated analyze of the proteomics and phosphoproteomics profiles. Compared with WT, the KO showed remarkable hyalinization and congestion lesions in the liver of males. Strikingly, pparγ deletion protected against the influence of high-fat diet feeding on lipid deposition in zebrafish. Some protein kinases critical for lipid metabolism, including serine/threonine-protein kinase TOR (mTOR), ribosomal protein S6 kinase (Rps6kb1b), and mitogen-activated protein kinase 14A (Mapk14a), were identified to be highly phosphorylated in KO based on differential proteome and phosphoproteome analysis. Our study supplies a pparγ deletion animal model and provides a comprehensive description of pparγ-induced expression level alterations of proteins and their phosphorylation, which are vital to understand the defective lipid metabolism risks posed to human health.


Assuntos
Metabolismo dos Lipídeos , PPAR gama , Peixe-Zebra , Adipogenia , Animais , Feminino , Deleção de Genes , Metabolismo dos Lipídeos/genética , Masculino , PPAR gama/genética , PPAR gama/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35580802

RESUMO

There is a growing interest to understand the capacity of farmed fish species to biosynthesise the physiologically important long-chain (≥C20) n-3 and n-6 polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), from their C18 PUFA precursors available in the diet. In fish, the LC-PUFA biosynthesis pathways involve sequential desaturation and elongation reactions from α-linolenic acid (ALA) and linoleic acid (LA), catalysed by fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. Our current understanding of the grass carp (Ctenopharyngodon idella) LC-PUFA biosynthetic capacity is limited despite representing the most farmed finfish produced worldwide. To address this knowledge gap, this study first aimed at characterising molecularly and functionally three genes (fads2, elovl5 and elovl2) with putative roles in LC-PUFA biosynthesis. Using an in vitro yeast-based system, we found that grass carp Fads2 possesses ∆8 and ∆5 desaturase activities, with ∆6 ability to desaturase not only the C18 PUFA precursors (ALA and LA) but also 24:5n-3 to 24:6n-3, a key intermediate to obtain DHA through the "Sprecher pathway". Additionally, the Elovl5 showed capacity to elongate C18 and C20 PUFA substrates, whereas Elovl2 was more active over C20 and C22. Collectively, the molecular cloning and functional characterisation of fads2, elovl5 and elovl2 demonstrated that the grass carp has all the enzymatic activities required to obtain ARA, EPA and DHA from LA and ALA. Importantly, the hepatocytes incubated with radiolabelled fatty acids confirmed the yeast-based results and demonstrated that these enzymes are functionally active.


Assuntos
Carpas , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Animais , Carpas/genética , Carpas/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/biossíntese , Saccharomyces cerevisiae
6.
J Biol Chem ; 295(40): 13875-13886, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32759307

RESUMO

MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish Siganus canaliculatus The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in S. canaliculatus hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (lxrα) and sterol regulatory element-binding protein-1 (srebp1), as well as the LC-PUFA biosynthesis-related genes (Δ4 fads2, Δ6Δ5 fads2, and elovl5) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish lxrα as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both in vitro and in vivo These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Receptores X do Fígado/metabolismo , MicroRNAs/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Linhagem Celular , Ácidos Graxos Insaturados/genética , Proteínas de Peixes/genética , Peixes/genética , Hepatócitos/metabolismo , Receptores X do Fígado/genética , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
Funct Integr Genomics ; 21(5-6): 557-570, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34327622

RESUMO

Obesity is a rapidly growing health pandemic, underlying a wide variety of disease conditions leading to increases in global mortality. It is known that the phosphorylation of various proteins regulates sterol regulatory element-binding transcription factors 1 (srebf1), a key lipogenic transcription factor, to cause the development of obesity. To detect the key protein kinases for regulating srebf1 in lipid deposition, we established the srebf1 knockout model in zebrafish (KO, srebf1-/-) by CRISPR/Cas9. The KO zebrafish exhibited a significant reduction of total free fatty acid content (fell 60.5%) and lipid deposition decrease compared with wild-type (WT) zebrafish. Meanwhile, srebf1 deletion in zebrafish eliminated lipid deposition induced by high-fat diet feeding. Compared with WT zebrafish, a total of 697 differentially expressed proteins and 316 differentially expressed phosphoproteins with 439 sites were identified in KO by differential proteomic and phosphoproteomic analyses. A significant number of proteins identified were involved in lipid and glucose metabolism. Moreover, some protein kinases critical for regulating srebf1 in lipid deposition, including Cdk2, Pkc, Prkceb, mTORC1, Mapk12, and Wnk1, were determined by network analyses. An in vitro study was performed to verify the network analysis results. Our findings provide potential targets (kinases) for human obesity treatments.


Assuntos
Modelos Animais de Doenças , Metabolismo dos Lipídeos/genética , Obesidade/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica , Humanos , Masculino , Proteômica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas de Peixe-Zebra/genética
8.
Anal Bioanal Chem ; 413(4): 1039-1046, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33210175

RESUMO

The characterization of very long-chain (>C24) polyunsaturated fatty acids (VLC-PUFAs), which are essential in the vision, neural function, and reproduction of vertebrates, is challenging because of the lack of reference standards and their very low concentrations in certain lipid classes. In this research, we have developed a new methodology for VLC-PUFA identification based on gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with an atmospheric pressure chemical ionization source (GC-APCI-QTOF MS). The mass accuracy attainable with the innovative QTOF instrument, together with the soft ionization of the APCI source, provides valuable information on the intact molecule, traditionally lost with electron ionization sources due to the extensive fragmentation suffered. We have identified, for the first time, VLC-PUFAs with chains up to 44 carbons in eyes, brain, and gonads of gilthead sea bream, a commercially important fish in the Mediterranean. The added value of ion mobility-mass spectrometry (IMS), recently developed in combination with GC-QTOF MS, and the contribution of the collisional cross section (CCS) parameter in the characterization of novel VLC-PUFAs (for which reference standards are not available) have been also evaluated. The methodology developed has allowed assessing qualitative differences between farmed and wild fish, and opens new perspectives in a still scarcely known field of research.


Assuntos
Ácidos Graxos Insaturados/análise , Dourada/metabolismo , Animais , Pressão Atmosférica , Ácidos Graxos Insaturados/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica
9.
Mar Drugs ; 19(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946805

RESUMO

Fish vary in their ability to biosynthesise long-chain polyunsaturated fatty acids (LC-PUFA) depending upon the complement and function of key enzymes commonly known as fatty acyl desaturases and elongases. It has been reported in Solea senegalensis the existence of a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid (DHA) from eicosapentaenoic acid (EPA), which can be modulated by the diet. The present study aims to evaluate the combined effects of the partial replacement of fish oil (FO) with vegetable oils and reduced environmental salinity in the fatty acid composition of relevant body compartments (muscle, hepatocytes and enterocytes), the enzymatic activity over α-linolenic acid (ALA) to form n-3 LC-PUFA through the incubation of isolated hepatocytes and enterocytes with [1-14C] 18:3 n-3, and the regulation of the S. senegalensis fads2 and elovl5 in the liver and intestine. The presence of radiolabelled products, including 18:4n-3, 20:4n-3 and EPA, provided compelling evidence that a complete pathway enabling the biosynthesis of EPA from ALA, establishing S. senegalensis, has at least one Fads2 with ∆6 activity. Dietary composition prevailed over salinity in regulating the expression of fads2, while salinity did so over dietary composition for elovl5. FO replacement enhanced the proportion of DHA in S. senegalensis muscle and the combination with 20 ppt salinity increased the amount of n-3 LC-PUFA in hepatocytes.


Assuntos
Gorduras na Dieta/metabolismo , Ecossistema , Ácidos Graxos Ômega-3/biossíntese , Óleos de Peixe/metabolismo , Linguados/metabolismo , Óleos de Plantas/metabolismo , Ração Animal , Animais , Aquicultura , Gorduras na Dieta/administração & dosagem , Enterócitos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Óleos de Peixe/administração & dosagem , Hepatócitos/metabolismo , Músculos/metabolismo , Óleos de Plantas/administração & dosagem , Salinidade , Fatores de Tempo , Água/química
10.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923820

RESUMO

Long-chain (C20-24) polyunsaturated fatty acids (LC-PUFAs) are essential nutrients that are mostly produced in marine ecosystems. Previous studies suggested that gammarids have some capacity to endogenously produce LC-PUFAs. This study aimed to investigate the repertoire and functions of elongation of very long-chain fatty acid (Elovl) proteins in gammarids. Our results show that gammarids have, at least, three distinct elovl genes with putative roles in LC-PUFA biosynthesis. Phylogenetics allowed us to classify two elongases as Elovl4 and Elovl6, as they were bona fide orthologues of vertebrate Elovl4 and Elovl6. Moreover, a third elongase was named as "Elovl1/7-like" since it grouped closely to the Elovl1 and Elovl7 found in vertebrates. Molecular analysis of the deduced protein sequences indicated that the gammarid Elovl4 and Elovl1/7-like were indeed polyunsaturated fatty acid (PUFA) elongases, whereas Elovl6 had molecular features typically found in non-PUFA elongases. This was partly confirmed in the functional assays performed on the marine gammarid Echinogammarus marinus Elovl, which showed that both Elovl4 and Elovl1/7-like elongated PUFA substrates ranging from C18 to C22. E. marinus Elovl6 was only able to elongate C18 PUFA substrates, suggesting that this enzyme does not play major roles in the LC-PUFA biosynthesis of gammarids.


Assuntos
Anfípodes/enzimologia , Clonagem Molecular , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/biossíntese , Anfípodes/genética , Animais , Evolução Molecular , Elongases de Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Filogenia , Especificidade por Substrato
11.
Br J Nutr ; 123(2): 149-160, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31603067

RESUMO

The regulation of lipogenesis and lipolysis mechanisms related to consumption of lipid has not been studied in swimming crab. The aims of the present study were to evaluate the effects of dietary lipid levels on growth, enzymes activities and expression of genes of lipid metabolism in hepatopancreas of juvenile swimming crab. Three isonitrogenous diets were formulated to contain crude lipid levels at 5·8, 9·9 and 15·1 %. Crabs fed the diet containing 15·1 % lipid had significantly lower growth performance and feed utilisation than those fed the 5·8 and 9·9 % lipid diets. Crabs fed 5·8 % lipid had lower malondialdehyde concentrations in the haemolymph and hepatopancreas than those fed the other diets. Highest glutathione peroxidase in haemolymph and superoxide dismutase in hepatopancreas were observed in crabs fed 5·8 % lipid. The lowest fatty acid synthase and glucose 6-phosphate dehydrogenase activities in hepatopancreas were observed in crabs fed 15·1 % lipid, whereas crabs fed 5·8 % lipid had lower carnitine palmitoyltransferase-1 activity than those fed the other diets. Crabs fed 15·1 % lipid showed lower hepatopancreas expression of genes involved in long-chain-PUFA biosynthesis, lipoprotein clearance, fatty acid uptake, fatty acid oxidation, lipid anabolism and lipid catabolism than those fed the other diets, whereas expression of some genes of lipoprotein assembly and fatty acid oxidation was up-regulated compared with crabs fed 5·8 % lipid. Overall, high dietary lipid level can inhibit growth, reduce antioxidant enzyme activities and influence lipid metabolic pathways to regulate lipid deposition in crab.


Assuntos
Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Gorduras na Dieta/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Braquiúros/enzimologia , Braquiúros/genética , Dieta/veterinária , Gorduras na Dieta/farmacologia , Ácido Graxo Sintases/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucosefosfato Desidrogenase/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/enzimologia , Hepatopâncreas/metabolismo , Malondialdeído/metabolismo , Oxirredução/efeitos dos fármacos , Superóxido Dismutase/efeitos dos fármacos , Natação
12.
Appl Microbiol Biotechnol ; 104(17): 7355-7365, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32676712

RESUMO

High dietary concentration of vegetable oil, particularly those rich in n-6 polyunsaturated fatty acids (PUFAs), can induce negative physiological effects including excessive lipid deposition in teleost fish. Omega-3 desaturase (Fat-1) of Caenorhabditis elegans is able to convert n-6 PUFAs to n-3 PUFAs and thus induces a low n-6/n-3 PUFAs ratio alleviating lipid deposition. In this study, we investigated the effects of dietary n-6 PUFAs on lipid metabolism of fat-1 transgenic zebrafish (Tg:fat-1), to explore the role of fat-1 in fish lipid metabolism. We first generated Tg:fat-1 zebrafish and assayed the effects of a low-fat diet (LFD) and a high-fat diet (HFD) prepared from soybean oil. Wild type zebrafish (WT) fed with HFD (HFD-WT) exhibited increased obesity and lipid deposition, especially in the abdominal cavity and liver. These defects were absent from HFD-Tg:fat-1. For each diet group, Tg:fat-1 exhibited significantly decreased levels of almost all hepatic lipid classes compared with WT. Expression levels of lipid synthesis-related genes and lipid deposition-related genes were markedly lower in the liver of HFD-Tg:fat-1 compared with HFD-WT. In contrast, the steatolysis-related genes significantly upregulated in HFD-Tg:fat-1. Then expression profiles of mitochondrial energy metabolism-related genes and ATP contents in the livers from LFD-WT, LFD-Tg:fat-1, HFD-WT, and HFD-Tg:fat-1 were determined. Our findings suggest that fat-1 protects fish from abnormal lipid deposition induced by high-vegetable oil feeding, through endogenously converting n-6 PUFAs to n-3 PUFAs. KEY POINTS: • fat-1 transgenic zebrafish (Tg:fat-1) can endogenously convert n-6 PUFAs to n-3 PUFAs. • Tg:fat-1 avoid serious abnormal lipid deposition induced by high-vegetable oil feeding. • fat-1 transgenosis effectively improved lipid metabolism and mitochondrial energy metabolism in zebrafish.


Assuntos
Ácidos Graxos Ômega-3 , Peixe-Zebra , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óleos de Plantas/metabolismo , Peixe-Zebra/genética
13.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429178

RESUMO

Very long-chain fatty acids (VLC-FA) play critical roles in neural tissues during the early development of vertebrates. However, studies on VLC-FA in fish are scarce. The biosynthesis of VLC-FA is mediated by elongation of very long-chain fatty acid 4 (Elovl4) proteins and, consequently, the complement and activity of these enzymes determines the capacity that a given species has for satisfying its physiological demands, in particular for the correct development of neurophysiological functions. The present study aimed to characterize and localize the expression of elovl4 genes from Sparus aurata and Solea senegalensis, as well as to determine the function of their encoded proteins. The results confirmed that both fish possess two distinct elovl4 genes, named elovl4a and elovl4b. Functional assays demonstrated that both Elovl4 isoforms had the capability to elongate long-chain (C20-24), both saturated (SFA) and polyunsaturated (PUFA), fatty acid precursors to VLC-FA. In spite of their overlapping activity, Elovl4a was more active in VLC-SFA elongation, while Elovl4b had a preponderant elongation activity towards n-3 PUFA substrates, particularly in S. aurata, being additionally the only isoform that is capable of elongating docosahexaenoic acid (DHA). A preferential expression of elovl4 genes was measured in neural tissues, being elovl4a and elovl4b mRNAs mostly found in brain and eyes, respectively.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Ácidos Graxos/biossíntese , Linguados/genética , Proteínas de Membrana/genética , Dourada/genética , Animais , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Filogenia
14.
J Exp Biol ; 222(Pt 10)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31019064

RESUMO

Insect pheromones are often derived from fatty acid metabolism. Fatty acid desaturases, enzymes introducing double bonds into fatty acids, are crucial for the biosynthesis of these chemical signals. Δ12-desaturases catalyse the biosynthesis of linoleic acid by introducing a second double bond into oleic acid, but have been identified in only a few animal species. Here, we report the functional characterisation of two Δ12-desaturases, Nvit_D12a and Nvit_D12b, from the parasitic wasp Nasonia vitripennis. We demonstrate that Nvit_D12a is expressed in the rectal vesicle of males where they produce a linoleic acid-derived sex pheromone to attract virgin females. 13C-labelling experiments with Urolepis rufipes, a closely related species belonging to the 'Nasonia group', revealed that females, but not males, are able to synthesise linoleic acid. U. rufipes males produce an isoprenoid sex pheromone in the same gland and do not depend on linoleic acid for pheromone production. This suggests that Δ12-desaturases are common in the 'Nasonia group', but acquired a specialised function in chemical communication of those species that use linoleic acid as a pheromone precursor. Phylogenetic analysis suggests that insect Δ12-desaturases have evolved repeatedly from Δ9-desaturases in different insect taxa. Hence, insects have developed a way to produce linoleic acid independent of the omega desaturase subfamily which harbours all of the eukaryotic Δ12-desaturases known so far.


Assuntos
Ácidos Graxos Dessaturases/genética , Proteínas de Insetos/genética , Ácido Linoleico/metabolismo , Atrativos Sexuais/biossíntese , Vespas/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Masculino
15.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614732

RESUMO

The rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability for the biosynthesis of long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and all the catalytic enzymes including two fatty acyl desaturase 2 (Δ4 Fads2 and Δ6/Δ5 Fads2) and two elongases (Elovl4 and Elovl5) have been identified, providing a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in fish. Stimulatory protein 1 (Sp1) has been speculated to be a vital transcription factor in determining the promoter activity of Fads-like genes in fish, however its regulatory effects on gene expression and LC-PUFA biosynthesis have not been demonstrated. Bioinformatic analysis predicted potential Sp1 binding sites in the promoters of the rabbitfish Δ6/Δ5 fads2 and elovl5, but not in Δ4 fads2 promoter. Here we cloned full-length cDNA of the rabbitfish sp1 gene, which encoded a putative protein of 701 amino acids, and was expressed in all tissues studied with highest levels in gill and eyes. The dual luciferase reporter assay in HepG2 line cells demonstrated the importance of the Sp1 binding site for the promoter activities of both Δ6/Δ5 fads2 and elovl5. Moreover, the electrophoretic mobility shift assay confirmed the direct interaction of Sp1 with the two promoters. Insertion of the Sp1 binding site of Δ6/Δ5 fads2 promoter into the corresponding region of the Δ4 fads2 promoter significantly increased activity of the latter. In the Siganus canaliculatus hepatocyte line (SCHL) cells, mRNA levels of Δ6/Δ5 fads2 and elovl5 were positively correlated with the expression of sp1 when sp1 was overexpressed or knocked-down by RNAi or antagonist (mithramycin) treatment. Moreover, overexpression of sp1 also led to a higher conversion of 18:2n-6 to 18:3n-6, 18:2n-6 to 20:2n-6, and 18:3n-3 to 20:3n-3, which related to the functions of Δ6/Δ5 Fads2 and Elovl5, respectively. These results indicated that Sp1 is involved in the transcriptional regulation of LC-PUFA biosynthesis by directly targeting Δ6/Δ5 fads2 and elovl5 in rabbitfish, which is the first report of Sp1 involvement in the regulation of LC-PUFA biosynthesis in vertebrates.


Assuntos
Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos Ômega-3/biossíntese , Proteínas de Peixes/genética , Fator de Transcrição Sp1/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fator de Transcrição Sp1/genética , Regulação para Cima
16.
BMC Evol Biol ; 18(1): 157, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340454

RESUMO

BACKGROUND: Provision of long-chain polyunsaturated fatty acids (LC-PUFA) in vertebrates occurs through the diet or via endogenous production from C18 precursors through consecutive elongations and desaturations. It has been postulated that the abundance of LC-PUFA in the marine environment has remarkably modulated the gene complement and function of Fads in marine teleosts. In vertebrates two fatty acyl desaturases, namely Fads1 and Fads2, encode ∆5 and ∆6 desaturases, respectively. To fully clarify the evolutionary history of LC-PUFA biosynthesis in vertebrates, we investigated the gene repertoire and function of Fads from species placed at key evolutionary nodes. RESULTS: We demonstrate that functional Fads1Δ5 and Fads2∆6 arose from a tandem gene duplication in the ancestor of vertebrates, since they are present in the Arctic lamprey. Additionally, we show that a similar condition was retained in ray-finned fish such as the Senegal bichir and spotted gar, with the identification of fads1 genes in these lineages. Functional characterisation of the isolated desaturases reveals the first case of a Fads1 enzyme with ∆5 desaturase activity in the Teleostei lineage, the Elopomorpha. In contrast, in Osteoglossomorpha genomes, while no fads1 was identified, two separate fads2 duplicates with ∆6 and ∆5 desaturase activities respectively were uncovered. CONCLUSIONS: We conclude that, while the essential genetic components involved LC-PUFA biosynthesis evolved in the vertebrate ancestor, the full completion of the LC-PUFA biosynthesis pathway arose uniquely in gnathostomes.


Assuntos
Evolução Molecular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/biossíntese , Peixes/genética , Peixes/metabolismo , Sequência de Aminoácidos , Animais , Ácidos Graxos Dessaturases/química , Filogenia , Homologia de Sequência do Ácido Nucleico
17.
Fish Physiol Biochem ; 44(3): 805-815, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29352428

RESUMO

Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is an important metabolic pathway in vertebrates, especially fish, considering they are the major source of n-3 LC-PUFA in the human diet. However, most fish have only limited capability for biosynthesis of LC-PUFA. The rabbitfish (Siganus canaliculatus) is able to synthesize LC-PUFA as it has all the key enzyme activities required including Δ6Δ5 Fads2, Δ4 Fads2, Elovl5, and Elovl4. We previously reported a direct interaction between the transcription factor Hnf4α and the promoter regions of Δ4 and Δ6Δ5 Fads2, which suggested that Hnf4α was involved in the transcriptional regulation of fads2 in rabbitfish. For functionally investigating it further, a full-length cDNA of 1736-bp-encoding rabbitfish Hnf4α with 454 amino acids was cloned, which was highly expressed in intestine, followed by liver and eyes. Similar to the expression characteristics of its target genes Δ4 and Δ6Δ5 fads2, levels of hnf4α mRNA in liver and eyes were higher in fish reared at low salinity than those reared in high salinity. After the rabbitfish primary hepatocytes were, respectively, incubated with alverine, benfluorex or BI6015, which were anticipated agonists or antagonist for Hnf4α, the mRNA level of Δ6Δ5 and Δ4 fads2 displayed a similar change tendency with that of hnf4α mRNA. Furthermore, when the mRNA level of hhf4α was knocked down using siRNA, the expression of Δ6Δ5 and Δ4 fads2 also decreased. Together, these data suggest that Hnf4α is involved in the transcriptional regulation of LC-PUFA biosynthesis, specifically, by targeting Δ4 and Δ6Δ5 fads2 in rabbitfish.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Proteínas de Peixes/genética , Peixes/genética , Peixes/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Animais , Células Cultivadas , Olho/metabolismo , Hepatócitos/metabolismo , Mucosa Intestinal/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Salinidade
18.
Br J Nutr ; 118(12): 1010-1022, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29151385

RESUMO

The replacement of fish oil (FO) with vegetable oil (VO) in feed formulations reduces the availability of n-3 long-chain PUFA (LC-PUFA) to marine fish such as gilthead seabream. The aim of this study was to examine compositional and physiological responses to a dietary gradient of n-3 LC-PUFA. Six iso-energetic and iso-nitrogenous diets (D1-D6) were fed to seabream, with the added oil being a blend of FO and VO to achieve a dietary gradient of n-3 LC-PUFA. Fish were sampled after 4 months feeding, to determine biochemical composition, tissue fatty acid concentrations and lipid metabolic gene expression. The results indicated a disturbance to lipid metabolism, with fat in the liver increased and fat deposits in the viscera reduced. Tissue fatty acid profiles were altered towards the fatty acid compositions of the diets. There was evidence of endogenous modification of dietary PUFA in the liver which correlated with the expression of fatty acid desaturase 2 (fads2). Expression of sterol regulatory element binding protein 1 (srebp1), fads2 and fatty acid synthase increased in the liver, whereas PPARα1 pathways appeared to be supressed by dietary VO in a concentration-dependent manner. The effects in lipogenic genes appear to become measurable in D1-D3, which agrees with the weight gain data suggesting that disturbances to energy metabolism and lipogenesis may be related to performance differences. These findings suggested that suppression of ß-oxidation and stimulation of srebp1-mediated lipogenesis may play a role in contributing toward steatosis in fish fed n-3 LC-PUFA deficient diets.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleo de Brassica napus/administração & dosagem , Dourada/metabolismo , Óleo de Soja/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
19.
Mar Drugs ; 15(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335553

RESUMO

Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs.


Assuntos
Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Octopodiformes/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas de Peixes/metabolismo , Alinhamento de Sequência
20.
Mar Drugs ; 14(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916863

RESUMO

In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in the Common Fisheries Policy.


Assuntos
Euphausiacea/química , Lipídeos/química , Nephropidae/química , Óleos/química , Animais , Regiões Antárticas , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Graxos/química , Feminino , Óleos de Peixe/química , Masculino , Noruega , Escócia , Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA