RESUMO
BACKGROUND: In-situ tumor ablation provides the immune system with the appropriate antigens to induce anti-tumor immunity. Here, we present an innovative technique for generating anti-tumor immunity by delivering exogenous ultra-high concentration (> 10,000 ppm) gaseous nitric oxide (UHCgNO) intratumorally. METHODS: The capability of UHCgNO to induce apoptosis was tested in vitro in mouse colon (CT26), breast (4T1) and Lewis lung carcinoma (LLC-1) cancer cell lines. In vivo, UHCgNO was studied by treating CT26 tumor-bearing mice in-situ and assessing the immune response using a Challenge assay. RESULTS: Exposing CT26, 4T1 and LLC-1 cell lines to UHCgNO for 10 s-2.5 min induced cellular apoptosis 24 h after exposure. Treating CT26 tumors in-situ with UHCgNO followed by surgical resection 14 days later resulted in a significant secondary anti-tumor effect in vivo. 100% of tumor-bearing mice treated with 50,000 ppm UHCgNO and 64% of mice treated with 20,000 ppm UHCgNO rejected a second tumor inoculation, compared to 0% in the naive control for 70 days. Additionally, more dendrocytes infiltrated the tumor 14 days post UHCgNO treatment versus the nitrogen control. Moreover, T-cell penetration into the primary tumor was observed in a dose-dependent manner. Systemic increases in T- and B-cells were seen in UHCgNO-treated mice compared to nitrogen control. Furthermore, polymorphonuclear-myeloid-derived suppressor cells were downregulated in the spleen in the UHCgNO-treated groups. CONCLUSIONS: Taken together, our data demonstrate that UHCgNO followed by the surgical removal of the primary tumor 14 days later induces a strong and potent anti-tumor response.
RESUMO
PURPOSE: Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS: The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS: The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION: The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.
Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Medição de Risco/métodos , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto , Pessoa de Meia-Idade , Ensaios Clínicos Fase III como AssuntoRESUMO
Background: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life and there remain no validated predictive models to guide its use. Methods: Digital pathology image and clinical data from pre-treatment prostate tissue from 5,727 patients enrolled on five phase III randomized trials treated with radiotherapy +/- ADT were used to develop and validate an artificial intelligence (AI)-derived predictive model to assess ADT benefit with the primary endpoint of distant metastasis. After the model was locked, validation was performed on NRG/RTOG 9408 (n = 1,594) that randomized men to radiotherapy +/- 4 months of ADT. Fine-Gray regression and restricted mean survival times were used to assess the interaction between treatment and predictive model and within predictive model positive and negative subgroup treatment effects. Results: In the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis (subdistribution hazard ratio [sHR] = 0.64, 95%CI [0.45-0.90], p = 0.01). The predictive model-treatment interaction was significant (p-interaction = 0.01). In predictive model positive patients (n = 543, 34%), ADT significantly reduced the risk of distant metastasis compared to radiotherapy alone (sHR = 0.34, 95%CI [0.19-0.63], p < 0.001). There were no significant differences between treatment arms in the predictive model negative subgroup (n = 1,051, 66%; sHR = 0.92, 95%CI [0.59-1.43], p = 0.71). Conclusions: Our data, derived and validated from completed randomized phase III trials, show that an AI-based predictive model was able to identify prostate cancer patients, with predominately intermediate-risk disease, who are likely to benefit from short-term ADT.
RESUMO
BACKGROUND: Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life, and there remain no validated predictive models to guide its use. METHODS: We used digital pathology images from pretreatment prostate tissue and clinical data from 5727 patients enrolled in five phase 3 randomized trials, in which treatment was radiotherapy with or without ADT, as our data source to develop and validate an artificial intelligence (AI)derived predictive patient-specific model that would determine which patients would develop the primary end point of distant metastasis. The model used baseline data to provide a binary output that a given patient will likely benefit from ADT or not. After the model was locked, validation was performed using data from NRG Oncology/Radiation Therapy Oncology Group (RTOG) 9408 (n=1594), a trial that randomly assigned men to radiotherapy plus or minus 4 months of ADT. FineGray regression and restricted mean survival times were used to assess the interaction between treatment and the predictive model and within predictive modelpositive, i.e., benefited from ADT, and negative subgroup treatment effects. RESULTS: Overall, in the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis. Of these enrolled patients, 543 (34%) were model positive, and ADT significantly reduced the risk of distant metastasis compared with radiotherapy alone. Of 1051 patients who were model negative, ADT did not provide benefit. CONCLUSIONS: Our AI-based predictive model was able to identify patients with a predominantly intermediate risk for prostate cancer likely to benefit from short-term ADT. (Supported by a grant [U10CA180822] from NRG Oncology Statistical and Data Management Center, a grant [UG1CA189867] from NCI Community Oncology Research Program, a grant [U10CA180868] from NRG Oncology Operations, and a grant [U24CA196067] from NRG Specimen Bank from the National Cancer Institute and by Artera, Inc. ClinicalTrials.gov numbers NCT00767286, NCT00002597, NCT00769548, NCT00005044, and NCT00033631.)
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios , Antígeno Prostático Específico/uso terapêutico , Inteligência Artificial , Hormônios/uso terapêuticoRESUMO
Prostate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient's optimal therapy is a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity. International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool-risk groups developed by the National Cancer Center Network (NCCN)-our models have superior discriminatory performance across all endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities, enabling global access to therapy personalization.