Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioinformatics ; 35(14): i354-i359, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510707

RESUMO

SUMMARY: SHAPE experiments are used to probe the structure of RNA molecules. We present ShaKer to predict SHAPE data for RNA using a graph-kernel-based machine learning approach that is trained on experimental SHAPE information. While other available methods require a manually curated reference structure, ShaKer predicts reactivity data based on sequence input only and by sampling the ensemble of possible structures. Thus, ShaKer is well placed to enable experiment-driven, transcriptome-wide SHAPE data prediction to enable the study of RNA structuredness and to improve RNA structure and RNA-RNA interaction prediction. For performance evaluation, we use accuracy and accessibility comparing to experimental SHAPE data and competing methods. We can show that Shaker outperforms its competitors and is able to predict high quality SHAPE annotations even when no reference structure is provided. AVAILABILITY AND IMPLEMENTATION: ShaKer is freely available at https://github.com/BackofenLab/ShaKer.


Assuntos
Algoritmos , Software , Aprendizado de Máquina , RNA , Transcriptoma
2.
Bioinformatics ; 35(16): 2862-2864, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590479

RESUMO

SUMMARY: Experimental structure probing data has been shown to improve thermodynamics-based RNA secondary structure prediction. To this end, chemical reactivity information (as provided e.g. by SHAPE) is incorporated, which encodes whether or not individual nucleotides are involved in intra-molecular structure. Since inter-molecular RNA-RNA interactions are often confined to unpaired RNA regions, SHAPE data is even more promising to improve interaction prediction. Here, we show how such experimental data can be incorporated seamlessly into accessibility-based RNA-RNA interaction prediction approaches, as implemented in IntaRNA. This is possible via the computation and use of unpaired probabilities that incorporate the structure probing information. We show that experimental SHAPE data can significantly improve RNA-RNA interaction prediction. We evaluate our approach by investigating interactions of a spliceosomal U1 snRNA transcript with its target splice sites. When SHAPE data is incorporated, known target sites are predicted with increased precision and specificity. AVAILABILITY AND IMPLEMENTATION: https://github.com/BackofenLab/IntaRNA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/genética , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos , Termodinâmica
3.
J Theor Biol ; 364: 98-102, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25218429

RESUMO

MOTIVATION: Interaction of two RNA molecules is considered as an important factor that regulates gene expression post-transcriptional process. Most of the ncRNAs prevent the translation of their target mRNA(s) by forming stable bindings with them. Although several computational methods have been proposed to predict the interactions between two RNAs, none of them can produce reliable and accurate results. RESULTS: In this paper, a new approach entitled tempRNAs is presented to accurately predict interaction structure between two RNAs based on a gradual temperature decrease. For each specified temperature, our algorithm contains two main steps. First, the secondary structure of each RNA is determined with respect to the previous base pairs as constraints. Second, two RNAs are concatenated and then the interaction between them is calculated according to the previous base pairs. The secondary structures are determined based on minimum free energy model. The proposed algorithm is evaluated for a set of known interacting RNA pairs. The results show the higher accuracy of the proposed method in comparison to the other state-of-the-art algorithms, namely inRNAs and RactIP.


Assuntos
RNA Bacteriano/química , Temperatura , Algoritmos , Escherichia coli/metabolismo , Conformação de Ácido Nucleico
4.
J Theor Biol ; 380: 178-82, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26037307

RESUMO

RNA molecules play important and fundamental roles in biological processes. Frequently, the functional form of single-stranded RNA molecules requires a specific tertiary structure. Classically, RNA structure determination has mostly been accomplished by X-Ray crystallography or Nuclear Magnetic Resonance approaches. These experimental methods are time consuming and expensive. In the past two decades, some computational methods and algorithms have been developed for RNA secondary structure prediction. In these algorithms, minimum free energy is known as the best criterion. However, the results of algorithms show that minimum free energy is not a sufficient criterion to predict RNA secondary structure. These algorithms need some additional knowledge about the structure, which has to be added in the methods. Recently, the information obtained from some experimental data, called SHAPE, can greatly improve the consistency between the native and predicted RNA secondary structure. In this paper, we investigate the influence of SHAPE data on four types of RNA substructures, helices, loops, base pairs from the start and end of helices and two base pairs from the start and end of helices. The results show that SHAPE data in helix regions can improve the prediction. We represent a new method to apply SHAPE data in helix regions for finding RNA secondary structure. Finally, we compare the results of the method on a set of RNAs to predict minimum free energy structure based on considering all SHAPE data and only SHAPE data in helix regions as pseudo free energy and without SHAPE data (without any pseudo free energy). The results show that RNA secondary structure prediction based on considering only SHAPE data in helix regions is more successful than not considering SHAPE data and it provides competitive results in comparison with considering all SHAPE data.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular
5.
J Theor Biol ; 300: 206-11, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22300797

RESUMO

RNA-RNA interaction is used in many biological processes such as gene expression regulation. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. In this regard, some algorithms have been formed to predict the structure of the interaction between two RNA molecules. One common pitfall in the most algorithms is their high computational time. In this paper, we introduce a novel algorithm called TIRNA to accurately predict the secondary structure between two RNA molecules based on minimum free energy (MFE). The algorithm is stand on a heuristic approach which employs some dot matrices for finding the secondary structure of each RNA and between two RNAs. The proposed algorithm has been performed on some standard datasets such as CopA-CopT, R1inv-R2inv, Tar-Tar*, DIS-DIS and IncRNA54-RepZ in the Escherichia coli bacteria. The time and space complexity of the algorithm are 0(k² log k²) and 0(k²), respectively, where k indicates the sum of the length of two RNAs. The experimental results show the high validity and efficiency of the TIRNA.


Assuntos
Modelos Genéticos , RNA/metabolismo , Algoritmos , Animais , Pareamento de Bases/genética , Sequência de Bases , Biologia Computacional/métodos , RNA/genética
6.
Genes Genet Syst ; 92(6): 257-265, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757510

RESUMO

It has long been established that in addition to being involved in protein translation, RNA plays essential roles in numerous other cellular processes, including gene regulation and DNA replication. Such roles are known to be dictated by higher-order structures of RNA molecules. It is therefore of prime importance to find an RNA sequence that can fold to acquire a particular function that is desirable for use in pharmaceuticals and basic research. The challenge of finding an RNA sequence for a given structure is known as the RNA design problem. Although there are several algorithms to solve this problem, they mainly consider hard constraints, such as minimum free energy, to evaluate the predicted sequences. Recently, SHAPE data has emerged as a new soft constraint for RNA secondary structure prediction. To take advantage of this new experimental constraint, we report here a new method for accurate design of RNA sequences based on their secondary structures using SHAPE data as pseudo-free energy. We then compare our algorithm with four others: INFO-RNA, ERD, MODENA and RNAifold 2.0. Our algorithm precisely predicts 26 out of 29 new sequences for the structures extracted from the Rfam dataset, while the other four algorithms predict no more than 22 out of 29. The proposed algorithm is comparable to the above algorithms on RNA-SSD datasets, where they can predict up to 33 appropriate sequences for RNA secondary structures out of 34.


Assuntos
Dobramento de RNA/fisiologia , RNA/metabolismo , RNA/fisiologia , Algoritmos , Sequência de Bases , Simulação por Computador , Desenho Assistido por Computador , Conformação de Ácido Nucleico , Dobramento de RNA/genética , Software
7.
J Bioinform Comput Biol ; 15(6): 1750023, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29113564

RESUMO

Finding an effective measure to predict a more accurate RNA secondary structure is a challenging problem. In the last decade, an experimental method, known as selective [Formula: see text]-hydroxyl acylation analyzed by primer extension (SHAPE), was proposed to measure the tendency of forming a base pair for almost all nucleotides in an RNA sequence. These SHAPE reactivities are then utilized to improve the accuracy of RNA structure prediction. Due to a significant impact of SHAPE reactivity and in order to reduce the experimental costs, we propose a new model called HL-k-mer. This model simulates the SHAPE reactivity for each nucleotide in an RNA sequence. This is done by fetching the SHAPE reactivities for all sub-sequences of length k (k-mers) appearing in helix and loop regions. For evaluating the quality of simulated SHAPE data, ESD-Fold method is used based on the SHAPE data simulated by the HL-k-mer model ([Formula: see text]). Also, for further evaluation of simulated SHAPE data, three different methods are employed. We also extend this model to simulate the SHAPE data for the RNA pseudoknotted structure. The results indicate that the average accuracies of prediction using the SHAPE data simulated by our models (for [Formula: see text]) are higher compared to the experimental SHAPE data.


Assuntos
Biologia Computacional/métodos , RNA/química , Acilação , Bases de Dados Factuais , Modelos Moleculares , Conformação de Ácido Nucleico , Termodinâmica
8.
PLoS One ; 11(11): e0166965, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27893832

RESUMO

BACKGROUND: Non-coding RNAs perform a wide range of functions inside the living cells that are related to their structures. Several algorithms have been proposed to predict RNA secondary structure based on minimum free energy. Low prediction accuracy of these algorithms indicates that free energy alone is not sufficient to predict the functional secondary structure. Recently, the obtained information from the SHAPE experiment greatly improves the accuracy of RNA secondary structure prediction by adding this information to the thermodynamic free energy as pseudo-free energy. METHOD: In this paper, a new method is proposed to predict RNA secondary structure based on both free energy and SHAPE pseudo-free energy. For each RNA sequence, a population of secondary structures is constructed and their SHAPE data are simulated. Then, an evolutionary algorithm is used to improve each structure based on both free and pseudo-free energies. Finally, a structure with minimum summation of free and pseudo-free energies is considered as the predicted RNA secondary structure. RESULTS AND CONCLUSIONS: Computationally simulating the SHAPE data for a given RNA sequence requires its secondary structure. Here, we overcome this limitation by employing a population of secondary structures. This helps us to simulate the SHAPE data for any RNA sequence and consequently improves the accuracy of RNA secondary structure prediction as it is confirmed by our experiments. The source code and web server of our proposed method are freely available at http://mostafa.ut.ac.ir/ESD-Fold/.


Assuntos
Algoritmos , Simulação por Computador , Conformação de Ácido Nucleico , RNA/química , Humanos , Termodinâmica
9.
Methods Mol Biol ; 1269: 123-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25577375

RESUMO

Interaction between two RNA molecules plays a crucial role in many medical and biological processes such as gene expression regulation. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. Some algorithms have been formed to predict the structure of the RNA-RNA interaction. High computational time is a common challenge in most of the presented algorithms. In this context, a heuristic method is introduced to accurately predict the interaction between two RNAs based on minimum free energy (MFE). This algorithm uses a few dot matrices for finding the secondary structure of each RNA and binding sites between two RNAs. Furthermore, a parallel version of this method is presented. We describe the algorithm's concurrency and parallelism for a multicore chip. The proposed algorithm has been performed on some datasets including CopA-CopT, R1inv-R2inv, Tar-Tar*, DIS-DIS, and IncRNA54-RepZ in Escherichia coli bacteria. The method has high validity and efficiency, and it is run in low computational time in comparison to other approaches.


Assuntos
RNA/química , Software , Algoritmos , Conformação de Ácido Nucleico
10.
Algorithms Mol Biol ; 9: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114714

RESUMO

BACKGROUND: RNA-RNA interaction plays an important role in the regulation of gene expression and cell development. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. In the RNA-RNA interaction prediction problem, two RNA sequences are given as inputs and the goal is to find the optimal secondary structure of two RNAs and between them. Some different algorithms have been proposed to predict RNA-RNA interaction structure. However, most of them suffer from high computational time. RESULTS: In this paper, we introduce a novel genetic algorithm called GRNAs to predict the RNA-RNA interaction. The proposed algorithm is performed on some standard datasets with appropriate accuracy and lower time complexity in comparison to the other state-of-the-art algorithms. In the proposed algorithm, each individual is a secondary structure of two interacting RNAs. The minimum free energy is considered as a fitness function for each individual. In each generation, the algorithm is converged to find the optimal secondary structure (minimum free energy structure) of two interacting RNAs by using crossover and mutation operations. CONCLUSIONS: This algorithm is properly employed for joint secondary structure prediction. The results achieved on a set of known interacting RNA pairs are compared with the other related algorithms and the effectiveness and validity of the proposed algorithm have been demonstrated. It has been shown that time complexity of the algorithm in each iteration is as efficient as the other approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA