Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Eur J Neurosci ; 57(11): 1870-1891, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032582

RESUMO

Playing specific genres of video games (e.g., action video games) has been linked to improvements in cognitive skills mostly related to attentional phenomena. Nonetheless, do video games have features or dimensions in common that impact cognitive improvements beyond the game genre? Here, we argue that the sensorimotor demand-the amount of demand for precise coordination between movement and perception-is a key element in the improvements associated with playing video games. We conducted a two-part study to test this hypothesis: a self-report online gaming instrument development and validation and an in-lab behavioural and electrophysiological study. In the first study, data from 209 participants were used to devise the sensorimotor demand instrument (SMDI). The SMDI was split into three dimensions of video game playing: sensorimotor contingency, immersion and unfocused gaming. Criterion validity related to video gamers' characteristics supported that the SMDI is sensitive to the input device (e.g., keyboard or touchscreens), and the most recent experience gained during gaming sessions while not being sensitive to the game genre. In the second study, data from 20 participants who performed four visual-attentional tasks previously reported in the literature showed that the SMDI's dimensions were associated with behavioural performance measures and the latency and amplitude of event-related potentials (N1, P2 and P3). Despite the challenge of studying the video gamer population, our study remarks on the relevance of sensorimotor demands in the performance of attentional tasks and its potential use as a dimension to characterize the experience of playing video games beyond the game genre.


Assuntos
Imersão , Jogos de Vídeo , Humanos , Atenção/fisiologia , Jogos de Vídeo/psicologia , Movimento
2.
J Neurophysiol ; 120(3): 960-972, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29766764

RESUMO

An important unresolved question about neural processing is the mechanism by which distant brain areas coordinate their activities and relate their local processing to global neural events. A potential candidate for the local-global integration are slow rhythms such as respiration. In this study, we asked if there are modulations of local cortical processing that are phase-locked to (peripheral) sensory-motor exploratory rhythms. We studied rats on an elevated platform where they would spontaneously display exploratory and rest behaviors. Concurrent with behavior, we monitored whisking through electromyography and the respiratory rhythm from the olfactory bulb (OB) local field potential (LFP). We also recorded LFPs from dorsal hippocampus, primary motor cortex, primary somatosensory cortex, and primary visual cortex. We defined exploration as simultaneous whisking and sniffing above 5 Hz and found that this activity peaked at ~8 Hz. We considered rest as the absence of whisking and sniffing, and in this case, respiration occurred at ~3 Hz. We found a consistent shift across all areas toward these rhythm peaks accompanying behavioral changes. We also found, across areas, that LFP gamma (70-100 Hz) amplitude could phase-lock to the animal's OB respiratory rhythm, a finding indicative of respiration-locked changes in local processing. In a subset of animals, we also recorded the hippocampal theta activity and found that occurred at frequencies overlapped with respiration but was not spectrally coherent with it, suggesting a different oscillator. Our results are consistent with the notion of respiration as a binder or integrator of activity between brain regions.


Assuntos
Comportamento Exploratório/fisiologia , Bulbo Olfatório/fisiologia , Respiração , Descanso/fisiologia , Córtex Sensório-Motor/fisiologia , Animais , Comportamento Animal/fisiologia , Eletromiografia , Hipocampo/fisiologia , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ritmo Teta , Vibrissas/fisiologia
3.
Hippocampus ; 27(4): 425-434, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28032676

RESUMO

Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Pupila , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Nível de Alerta/fisiologia , Atenção/fisiologia , Eletrodos Implantados , Medições dos Movimentos Oculares , Movimentos Oculares/fisiologia , Feminino , Macaca mulatta , Testes Neuropsicológicos , Tamanho do Órgão , Pupila/fisiologia
4.
BMC Neurosci ; 18(1): 28, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28264664

RESUMO

BACKGROUND: EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers. RESULTS: Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load. CONCLUSIONS: These findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.


Assuntos
Encéfalo/fisiologia , Dança/fisiologia , Imaginação/fisiologia , Percepção de Movimento/fisiologia , Atividade Motora/fisiologia , Reconhecimento Psicológico/fisiologia , Ritmo alfa , Análise de Variância , Ritmo beta , Feminino , Humanos , Masculino , Prática Psicológica , Competência Profissional , Adulto Jovem
5.
Eur J Investig Health Psychol Educ ; 13(2): 317-330, 2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36826208

RESUMO

The prevalence of anxiety has increased dramatically due to COVID-19, so effective preventive interventions are welcome. The main objective of our study was to compare the acute relaxation response (RR) induced by Tibetan singing bowl (TSB) sound-based treatment against progressive muscle relaxation (PMR) and a control waiting list group (CWL) in a single treatment session in an adult nonclinical anxious population. In this cross-sectional randomized control trial, 50 participants selected based on high state anxiety were randomly assigned to one of the experimental groups. Pre/post self-reported anxiety, electroencephalographic activity (EEG), and heart rate variability (HRV) were recorded at baseline (T1), minute 15 (T2), minute 30 (T3), and minute 45 (T4). The TSB group showed significant reductions in alpha power (from T2 to T4) and increased HRV (from T3 to T4) compared with the PMR and CWL groups. Moreover, TSB and PMR both showed significant reductions in self-reported anxiety compared with CWL, with this effect being more evident in the TSB group. We concluded that a single session of TSB treatment was able to induce a more evident psychological/physiological relaxation response compared with PMR and CWL. TSB could be a relevant acute intervention in stressful situations or crisis intervention and while waiting for conventional interventions.

6.
Front Aging Neurosci ; 15: 1097577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845655

RESUMO

Introduction: Alzheimer's disease (AD) is the leading cause of dementia worldwide, but its pathophysiological phenomena are not fully elucidated. Many neurophysiological markers have been suggested to identify early cognitive impairments of AD. However, the diagnosis of this disease remains a challenge for specialists. In the present cross-sectional study, our objective was to evaluate the manifestations and mechanisms underlying visual-spatial deficits at the early stages of AD. Methods: We combined behavioral, electroencephalography (EEG), and eye movement recordings during the performance of a spatial navigation task (a virtual version of the Morris Water Maze adapted to humans). Participants (69-88 years old) with amnesic mild cognitive impairment-Clinical Dementia Rating scale (aMCI-CDR 0.5) were selected as probable early AD (eAD) by a neurologist specialized in dementia. All patients included in this study were evaluated at the CDR 0.5 stage but progressed to probable AD during clinical follow-up. An equal number of matching healthy controls (HCs) were evaluated while performing the navigation task. Data were collected at the Department of Neurology of the Clinical Hospital of the Universidad de Chile and the Department of Neuroscience of the Faculty of Universidad de Chile. Results: Participants with aMCI preceding AD (eAD) showed impaired spatial learning and their visual exploration differed from the control group. eAD group did not clearly prefer regions of interest that could guide solving the task, while controls did. The eAD group showed decreased visual occipital evoked potentials associated with eye fixations, recorded at occipital electrodes. They also showed an alteration of the spatial spread of activity to parietal and frontal regions at the end of the task. The control group presented marked occipital activity in the beta band (15-20 Hz) at early visual processing time. The eAD group showed a reduction in beta band functional connectivity in the prefrontal cortices reflecting poor planning of navigation strategies. Discussion: We found that EEG signals combined with visual-spatial navigation analysis, yielded early and specific features that may underlie the basis for understanding the loss of functional connectivity in AD. Still, our results are clinically promising for early diagnosis required to improve quality of life and decrease healthcare costs.

7.
Biol Res ; 45(2): 183-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23096363

RESUMO

Here we show the cloning and characterization of a novel homolog of prepro C-RFa cDNA from Cyprinus carpio. The deduced preprohormone precursor of 115 amino acids leads to a mature bioactive peptide of 20 amino acids with identical sequence to other teleost C-RFa. Modeling of the mature C-RFa peptide highlighted significant similarity to homologous human PrRP20, specifically the conserved amphipathic system defined by the C-terminal alpha-helix. Clearly, the synthetic C-RFa peptide stimulated prolactin release from primary cultured fish pituitary cells. For the first time, significant variation was shown in C-RFa mRNA and protein levels in the hypothalamus and pituitary between summer- and winter-acclimatized carp. Furthermore, C-RFa protein distribution in carp central nervous tissue was visualized by immunodetection in fibers and cells in hypothalamus, olfactory tract, cerebellum and pituitary stalk. In conclusion, we demonstrated the structure conservation of C-RFa in teleosts and mammals and immunopositive cells and fibers for C-RFa in brain areas. Finally, the increase of C-RFa expression suggests the participation of this hypothalamic factor in the mechanism of modulation in PRL expression in carp.


Assuntos
Aclimatação/genética , Carpas/genética , Neuropeptídeos/genética , Hipófise/metabolismo , Prolactina/metabolismo , Aclimatação/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/fisiologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Neuropeptídeos/metabolismo , Prolactina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano
8.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35365504

RESUMO

Variations in human behavior correspond to the adaptation of the nervous system to different internal and environmental demands. Attention, a cognitive process for weighing environmental demands, changes over time. Pupillary activity, which is affected by fluctuating levels of cognitive processing, appears to identify neural dynamics that relate to different states of attention. In mice, for example, pupil dynamics directly correlate with brain state fluctuations. Although, in humans, alpha-band activity is associated with inhibitory processes in cortical networks during visual processing, and its amplitude is modulated by attention, conclusive evidence linking this narrowband activity to pupil changes in time remains sparse. We hypothesize that, as alpha activity and pupil diameter indicate attentional variations over time, these two measures should be comodulated. In this work, we recorded the electroencephalographic (EEG) and pupillary activity of 16 human subjects who had their eyes fixed on a gray screen for 1 min. Our study revealed that the alpha-band amplitude and the high-frequency component of the pupil diameter covariate spontaneously. Specifically, the maximum alpha-band amplitude was observed to occur ∼300 ms before the peak of the pupil diameter. In contrast, the minimum alpha-band amplitude was noted to occur ∼350 ms before the trough of the pupil diameter. The consistent temporal coincidence of these two measurements strongly suggests that the subject's state of attention, as indicated by the EEG alpha amplitude, is changing moment to moment and can be monitored by measuring EEG together with the diameter pupil.


Assuntos
Pupila , Vigília , Animais , Atenção/fisiologia , Eletroencefalografia , Humanos , Camundongos , Pupila/fisiologia , Percepção Visual , Vigília/fisiologia
9.
J Neurosci ; 30(13): 4787-95, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20357129

RESUMO

Visual event-related potentials (ERPs) produced by a stimulus are thought to reflect either an increase of synchronized activity or a phase realignment of ongoing oscillatory activity, with both mechanisms sharing the assumption that ERPs are independent of the current state of the brain at the time of stimulation. In natural viewing, however, visual inputs occur one after another at specific subject-paced intervals through unconstrained eye movements. We conjecture that during natural viewing, ERPs generated after each fixation are better explained by a superposition of ongoing oscillatory activity related to the processing of previous fixations, with new activity elicited by the visual input at the current fixation. We examined the electroencephalography (EEG) signals that occur in humans at the onset of each visual fixation, both while subjects freely viewed natural scenes and while they viewed a black or gray background. We found that the fixation ERPs show visual components that are absent when subjects move their eyes on a homogeneous gray or black screen. Single-trial EEG signals that comprise the ERP are predicted more accurately by a model of superposition than by either phase resetting or the addition of evoked responses and stimulus-independent noise. The superposition of ongoing oscillatory activity and the visually evoked response results in a modification of the ongoing oscillation phase. The results presented suggest that the observed EEG signals reflect changes occurring in a common neuronal substrate rather than a simple summation at the scalp of signals from independent sources.


Assuntos
Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Eletroencefalografia , Potenciais Evocados Visuais , Movimentos Oculares , Fixação Ocular , Humanos , Estimulação Luminosa
10.
Front Neurosci ; 15: 617824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584188

RESUMO

A brief image presentation is sufficient to discriminate and individuate objects of expertise. Although perceptual expertise is acquired through extensive practice that increases the resolution of representations and reduces the latency of image decoding and coarse and fine information extraction, it is not known how the stages of visual processing impact object discrimination learning (ODL). Here, we compared object discrimination with brief (100 ms) and long (1,000 ms) perceptual encoding times to test if the early and late visual processes are required for ODL. Moreover, we evaluated whether encoding time and discrimination practice shape perception and recognition memory processes during ODL. During practice of a sequential matching task with initially unfamiliar complex stimuli, we find greater discrimination with greater encoding times regardless of the extent of practice, suggesting that the fine information extraction during late visual processing is necessary for discrimination. Interestingly, the overall discrimination learning was similar for brief and long stimuli, suggesting that early stages of visual processing are sufficient for ODL. In addition, discrimination practice enhances perceive and know for brief and long stimuli and both processes are associated with performance, suggesting that early stage information extraction is sufficient for modulating the perceptual processes, likely reflecting an increase in the resolution of the representations and an early availability of information. Conversely, practice elicited an increase of familiarity which was not associated with discrimination sensitivity, revealing the acquisition of a general recognition memory. Finally, the recall is likely enhanced by practice and is associated with discrimination sensitivity for long encoding times, suggesting the engagement of recognition memory in a practice independent manner. These findings contribute to unveiling the function of early stages of visual processing in ODL, and provide evidence on the modulation of the perception and recognition memory processes during discrimination practice and its relationship with ODL and perceptual expertise acquisition.

11.
Front Psychol ; 10: 1138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178787

RESUMO

Imagine a scenario where you are cooking and suddenly, the contents of the pot start to come out, and the oven bell rings. You would have to stop what you are doing and start responding to the changing demands, switching between different objects, operations and mental sets. This ability is known as cognitive flexibility. Now, add to this scenario a strong emotional atmosphere that invades you as you spontaneously recall a difficult situation you had that morning. How would you behave? Recent studies suggest that emotional states do modulate cognitive flexibility, but these findings are still controversial. Moreover, there is a lack of evidence regarding the underlying brain processes. The purpose of the present study was, therefore, to examine such interaction while monitoring changes in ongoing cortical activity using EEG. In order to answer this question, we used two musical stimuli to induce emotional states (positive/high arousal/open stance and negative/high arousal/closed stance). Twenty-nine participants performed two blocks of the Madrid Card Sorting Task in a neutral silence condition and then four blocks while listening to the counterbalanced musical stimuli. To explore this interaction, we used a combination of first-person (micro-phenomenological interview) and third-person (behavior and EEG) approaches. Our results show that compared to the positive stimuli and silence condition, negative stimuli decrease reaction times (RTs) for the shift signal. Our data show that the valance of the first emotional block is determinant in the RTs of the subsequent blocks. Additionally, the analysis of the micro-phenomenological interview and the integration of first- and third-person data show that the emotional disposition generated by the music could facilitate task performance for some participants or hamper it for others, independently of its emotional valence. When the emotional disposition hampered task execution, RTs were slower, and the P300 potential showed a reduced amplitude compared to the facilitated condition. These findings show that the interaction between emotion and cognitive flexibility is more complex than previously thought and points to a new way of understanding the underlying mechanisms by incorporating an in-depth analysis of individual subjective experience.

12.
Vision Res ; 148: 37-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775623

RESUMO

Through same-different judgements, we can discriminate an immense variety of stimuli and consequently, they are critical in our everyday interaction with the environment. The quality of the judgements depends on familiarity with stimuli. A way to improve the discrimination is through learning, but to this day, we lack direct evidence of how learning shapes the same-different judgments with complex stimuli. We studied unsupervised visual discrimination learning in 42 participants, as they performed same-different judgments with two types of unfamiliar complex stimuli in the absence of labeling or individuation. Across nine daily training sessions with equiprobable same and different stimuli pairs, participants increased the sensitivity and the criterion by reducing the errors with both same and different pairs. With practice, there was a superior performance for different pairs and a bias for different response. To evaluate the process underlying this bias, we manipulated the proportion of same and different pairs, which resulted in an additional proportion-induced bias, suggesting that the bias observed with equal proportions was a stimulus processing bias. Overall, these results suggest that unsupervised discrimination learning occurs through changes in the stimulus processing that increase the sensory evidence and/or the precision of the working memory. Finally, the acquired discrimination ability was fully transferred to novel exemplars of the practiced stimuli category, in agreement with the acquisition of a category specific perceptual expertise.


Assuntos
Aprendizagem por Discriminação/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Análise de Variância , Atenção/fisiologia , Viés , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos
13.
Front Syst Neurosci ; 7: 43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009562

RESUMO

Visual exploration in primates depends on saccadic eye movements (SEMs) that cause alternations of neural suppression and enhancement. This modulation extends beyond retinotopic areas, and is thought to facilitate perception; yet saccades may also influence brain regions critical for forming memories of these exploratory episodes. The hippocampus, for example, shows oscillatory activity that is generally associated with encoding of information. Whether or how hippocampal oscillations are influenced by eye movements is unknown. We recorded the neural activity in the human and macaque hippocampus during visual scene search. Across species, SEMs were associated with a time-limited alignment of a low-frequency (3-8 Hz) rhythm. The phase alignment depended on the task and not only on eye movements per se, and the frequency band was not a direct consequence of saccade rate. Hippocampal theta-frequency oscillations are produced by other mammals during repetitive exploratory behaviors, including whisking, sniffing, echolocation, and locomotion. The present results may reflect a similar yet distinct primate homologue supporting active perception during exploration.

14.
Biol Res ; 40(4): 523-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18575685

RESUMO

In this concise review we discuss some of the complex edges of the concept of death that arose after the notorious advances in science and medicine over the last 50 years, in which the classical cardio-pulmonary criteria have led to the neurological criteria of death. New complicated questions like the definition of death and the operational criteria for diagnosing it have arisen and we think that they are far from being adequately and satisfactorily solved. A number of important issues--like the reliability and differences between cardio-pulmonary versus brain based criteria of death, if death is an event or a process, the meaning of integration and irreversibility--have not yet received sufficient attention. Here we have approached the death problem from two (biological) complex system perspectives: the organism level and the cellular-molecular level. We also discuss issues from a third systemic approach, that is, the entire society, thus involving legal, religious, bioethical and political aspects of death. Our aim is to integrate new perspectives in order to promote further discussion on these critical yet frequently neglected issues.


Assuntos
Morte Encefálica , Ética Médica , Religião e Medicina , Atitude Frente a Morte , Circulação Sanguínea , Morte Encefálica/diagnóstico , Morte Encefálica/legislação & jurisprudência , Estado de Consciência , Humanos , Fenômenos Fisiológicos do Sistema Nervoso/fisiologia , Respiração
15.
Biol. Res ; 45(2): 183-192, 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-648578

RESUMO

Here we show the cloning and characterization of a novel homolog of prepro C-RFa cDNA from Cyprinus carpió. The deduced preprohormone precursor of 115 amino acids leads to a mature bioactive peptide of 20 amino acids with identical sequence to other teleost C-RFa. Modeling of the mature C-RFa peptide highlighted significant similarity to homologous human PrRP20, specifically the conserved amphipathic system defined by the C-terminal alpha-helix. Clearly, the synthetic C-RFa peptide stimulated prolactin release from primary cultured fish pituitary cells. For the first time, significant variation was shown in C-RFa mRNA and protein levels in the hypothalamus and pituitary between summer- and winter-acclimatized carp. Furthermore, C-RFa protein distribution in carp central nervous tissue was visualized by immunodetection in fibers and cells in hypothalamus, olfactory tract, cerebellum and pituitary stalk. In conclusion, we demonstrated the structure conservation of C-RFa in teleosts and mammals and immunopositive cells and fibers for C-RFa in brain areas. Finally, the increase of C-RFa expression suggests the participation of this hypothalamic factor in the mechanism of modulation in PRL expression in carp.


Assuntos
Animais , Humanos , Masculino , Aclimatação/genética , Carpas/genética , Neuropeptídeos/genética , Hipófise/metabolismo , Prolactina/metabolismo , Sequência de Aminoácidos , Aclimatação/fisiologia , Sequência de Bases , Clonagem Molecular , Carpas/fisiologia , DNA Complementar/genética , DNA Complementar/metabolismo , Expressão Gênica , Imuno-Histoquímica , Neuropeptídeos/metabolismo , Prolactina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano
16.
Biol. Res ; 40(4): 523-534, 2007. tab
Artigo em Inglês | LILACS | ID: lil-484878

RESUMO

In this concise review we discuss some of the complex edges of the concept of death that arose after the notorious advances in science and medicine over the last 50 years, in which the classical cardio-pulmonary criteria have led to the neurological criteria of death. New complicated questions like the definition of death and the operational criteria for diagnosing it have arisen and we think that they are far from being adequately and satisfactorily solved. A number of important issues -like the reliability and differences between cardio-pulmonary versus brain based criteria of death, if death is an event or a process, the meaning of integration and irreversibility- have not yet received sufficient attention. Here we have approached the death problem from two (biological) complex system perspectives: the organism level and the cellular-molecular level. We also discuss issues from a third systemic approach, that is, the entire society, thus involving legal, religious, bioethical and political aspects of death. Our aim is to integrate new perspectives in order to promote further discussion on these critical yet frequently neglected issues.


Assuntos
Humanos , Morte Encefálica , Ética Médica , Religião e Medicina , Atitude Frente a Morte , Circulação Sanguínea , Morte Encefálica/diagnóstico , Morte Encefálica/legislação & jurisprudência , Estado de Consciência , Fenômenos Fisiológicos do Sistema Nervoso/fisiologia , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA