Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318177

RESUMO

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Assuntos
Glaucoma/metabolismo , Glucose/metabolismo , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ácido Pirúvico/metabolismo , Sirolimo/farmacologia , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/fisiopatologia , Pressão Intraocular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroproteção/efeitos dos fármacos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo
2.
Neurochem Res ; 43(8): 1500-1510, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860619

RESUMO

Visual and retinal function was measured in a mouse model of chemically induced, sustained dyslipidemia to determine the contribution of dyslipidemia to the pathogenesis of retinopathy in the context of metabolic syndrome. Fifteen male C57BL/6Crl mice were divided into three groups. Poloxamer 407 (P-407), 14.5% w/w was delivered at a rate of 6 µl/day by implanted osmotic mini-pumps either subcutaneously (P-407 SQ) or intraperitoneally (P-407 IP) to P-407-treated mice, whereas saline was administered at the same rate to control mice using only the subcutaneous route of administration. Total cholesterol (TC) and true triglyceride (TG) levels were quantified from plasma. Optomotor responses to stimuli of varying spatial frequency or contrast were used to measure visual acuity and contrast sensitivity. Retinal function was determined using Ganzfeld flash electroretinography (ERG). At 32 days, TC for the P-407 IP group was significantly elevated compared to saline controls (169.4 ± 16.5 mg/dl, 0.001 < P < 0.01). TG levels for both the P-407 SQ (59.3 ± 22.4 mg/dl, 0.01 < P < 0.05) and P-407 IP groups (67.7 ± 18.0 mg/dl, 0.001 < P < 0.01) were significantly elevated relative to controls. Electroretinography demonstrated a very significant decline in the b/a ratio (1.80 ± 0.11, P < 0.01) for the P-407 IP group. The b/a ratio exhibited a moderate, significant correlation with TC levels (r = - 0.4425, P = 0.0392) and a strong, very significant correlation with TG levels (r = - 0.6190, P = 0.0021). Delivery of P-407 via osmotic mini-pump resulted in the sustained, significant elevation of plasma TC and TG levels. This elevation in plasma lipid levels was correlated with a decline in inner retinal function.


Assuntos
Dislipidemias/sangue , Dislipidemias/complicações , Retina/fisiologia , Transtornos da Visão/sangue , Transtornos da Visão/etiologia , Animais , Colesterol/sangue , Dislipidemias/induzido quimicamente , Eletrorretinografia/efeitos dos fármacos , Eletrorretinografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poloxâmero/administração & dosagem , Poloxâmero/toxicidade , Triglicerídeos/sangue , Transtornos da Visão/induzido quimicamente
3.
J Biol Chem ; 289(13): 9340-51, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24558037

RESUMO

N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Amidas/química , Amidoidrolases/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Hidrólise , Cinética , Ácidos Linoleicos/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fenóis/química , Alcamidas Poli-Insaturadas/química , Ratos , Ratos Sprague-Dawley
4.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895321

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.

5.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37886472

RESUMO

Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize 3 molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.

6.
J Biol Chem ; 287(40): 33227-36, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22865860

RESUMO

3-Hydroxy-3-methylglutaryl-CoA lyase-like protein (HMGCLL1) has been annotated in the Mammalian Genome Collection as a previously unidentified human HMG-CoA lyase (HMGCL). To test the validity of this annotation and evaluate the physiological role of the protein, plasmids were constructed for protein expression in Escherichia coli and Pichia pastoris. Protein expression in E. coli produced insoluble material. In contrast, active HMGCLL1 could be recovered upon expression in P. pastoris. Antibodies were prepared against a unique peptide sequence found in the N terminus of the protein. In immunodetection experiments, the antibodies discriminated between HMGCLL1 and mitochondrial HMGCL. Purified enzyme was characterized and demonstrated to cleave HMG-CoA to acetoacetate and acetyl-CoA with catalytic and affinity properties comparable with human mitochondrial HMGCL. The deduced HMGCLL1 sequence contains an N-terminal myristoylation motif; the putative modification site was eliminated by construction of a G2A HMGCLL1. Modification of both proteins was attempted using human N-myristoyltransferase and [(3)H]myristoyl-CoA. Wild-type protein was clearly modified, whereas G2A protein was not labeled. Myristoylation of HMGCLL1 affects its cellular localization. Upon transfection of appropriate expression plasmids into COS1 cells, immunofluorescence detection indicates that G2A HMGCLL1 exhibits a diffuse pattern, suggesting a cytosolic location. In contrast, wild-type HMGCLL1 exhibits a punctate as well as a perinuclear immunostaining pattern, indicating myristoylation dependent association with nonmitochondrial membrane compartments. In control experiments with the HMGCL expression plasmid, protein is localized in the mitochondria, as anticipated. The available results for COS1 cell expression, as well as endogenous expression in U87 cells, indicate that HMGCLL1 is an extramitochondrial hydroxymethylglutaryl-CoA lyase.


Assuntos
Oxo-Ácido-Liases/química , Acil Coenzima A/química , Animais , Células COS , Catálise , Linhagem Celular Tumoral , Chlorocebus aethiops , Metabolismo Energético , Escherichia coli/metabolismo , Feminino , Humanos , Corpos Cetônicos/química , Cetonas , Lipídeos/química , Lipogênese , Masculino , Mitocôndrias/metabolismo , Modelos Químicos , Mutagênese , Neoplasias/metabolismo , Oxo-Ácido-Liases/genética , Peptídeos/química , Plasmídeos/metabolismo , Ratos
7.
J Biol Chem ; 285(34): 26341-9, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20558737

RESUMO

HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 A, respectively. Comparison of these beta/alpha-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg(2+) coordination and positioning of the flexible loop containing the conserved HMGCL "signature" sequence. In the R41M-Mg(2+)-substrate ternary complex, loop residue Cys(266) (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg(2+)-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg(2+) liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His(233) and His(235) imidazoles, other Mg(2+) ligands are the Asp(42) carboxyl oxygen and an ordered water molecule. This water, positioned between Asp(42) and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg(41) with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg(41) mutation on reaction product enolization and explains why human Arg(41) mutations cause drastic enzyme deficiency.


Assuntos
Acil Coenzima A/química , Oxo-Ácido-Liases/química , Arginina , Sítios de Ligação , Cristalografia por Raios X , Humanos , Magnésio , Conformação Proteica , Água
8.
Arch Biochem Biophys ; 511(1-2): 48-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21514269

RESUMO

Human 3-hydroxy-3-methylglutaryl-CoA lyase catalyzes formation of acetyl-CoA and acetoacetate in a reaction that requires divalent cation and is stimulated by sulfhydryl protective reagents. The enzyme is a homodimer and inter-subunit adducts form in the absence of reducing agents or upon treatment with cysteine selective crosslinking agents. To address the influence of cysteines on enzyme activity and formation of inter-subunit and intra-subunit adducts, single serine substitutions have been engineered for each enzyme cysteine. Enzyme activity varies for each cysteine→serine mutant protein and different mutations have widely different effects on recovery of activity upon DTT treatment of non-reduced enzyme. These levels of enzyme activity do not strongly correlate with formation of inter-subunit adducts by these HMGCL mutants. C170S, C266S, and C323S proteins do not form inter-subunit disulfide adducts but such an adduct is restored in the C170S/C174S double mutant. Coexpression of HMGCL proteins encoded by C266S and C323S expression plasmids supports formation of a C266S/C323S heterodimer which does form a covalent inter-subunit adduct. These observations are interpreted in the context of competition between cysteines in formation of intra-subunit and inter-subunit heterodisulfide adducts.


Assuntos
Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Cisteína/química , Primers do DNA/genética , Dimerização , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/genética , Multimerização Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
9.
Dis Model Mech ; 14(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33462143

RESUMO

Variants in the LIM homeobox transcription factor 1-beta (LMX1B) gene predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1B mutations varies widely between individuals. To better understand the mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst ) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+ /J (C3H) and DBA/2J-Gpnmb+ (D2-G) mouse strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing abnormal IOP distribution, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands and corneal abnormalities) and glaucomatous nerve damage. By contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D -induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, providing a panel of strains with different phenotypic severities and identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments.


Assuntos
Segmento Anterior do Olho/fisiopatologia , Anormalidades do Olho/genética , Predisposição Genética para Doença , Glaucoma/genética , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Alelos , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Genes Homeobox , Patrimônio Genético , Genótipo , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Nervo Óptico/patologia , Fenótipo , Especificidade da Espécie
10.
J Glaucoma ; 27(9): 828-841, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30001268

RESUMO

PURPOSE: We investigated the relationship between visual parameters that are commonly affected during glaucomatous disease progression with functional measures of retina physiology using electroretinography and behavioral measures of visual function in a mouse model of glaucoma. Electroretinogram components measuring retinal ganglion cell (RGC) responses were determined using the non-invasive Ganzfeld flash electroretinography (fERG) to assess RGC loss in a mouse model of glaucoma. METHODS: Intraocular pressure (IOP), behaviorally assessed measures of visual function, namely visual acuity and contrast sensitivity as well as fERG responses were recorded in 4- and 11-month-old male DBA/2 mice. Scotopic threshold response (STR) and photopic negative response components as well as oscillatory potentials (OPs) were isolated from fERG responses and correlated with IOP, optomotor reflex measurements, and RGC counts. RESULTS: The 11-month-old DBA/2 mice had significantly elevated IOP, reduced visual performance, as assessed behaviorally, significant RGC loss, deficits in standardized fERG responses, reduced STRs, and differences in OP amplitudes and latencies, when compared with 4-month-old mice of the same strain. STRs and OPs correlated with some visual and physiological parameters. In addition, elevated IOP and RGC loss correlated positively with measures of visual function, specifically with surrogate measures of RGC function derived from fERG. CONCLUSIONS: Our data suggest that RGC function as well as interactions of RGCs with other retinal cell types is impaired during glaucoma. In addition, a later OP wavelet denoted as OP4 in this study was identified as a very reproducible indicator of loss of visual function in the glaucoma mouse model.


Assuntos
Glaucoma de Ângulo Aberto/fisiopatologia , Retina/fisiopatologia , Células Ganglionares da Retina/fisiologia , Acuidade Visual/fisiologia , Animais , Sensibilidades de Contraste/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Visão Noturna/fisiologia , Estimulação Luminosa , Tonometria Ocular
11.
Lipids ; 51(7): 857-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221132

RESUMO

Neurons are especially susceptible to oxidative damage, which is increasingly implicated in neurodegenerative disease. Certain N-acylethanolamines (NAEs) have been shown to protect neurons from oxidative stress. Since glaucoma may be considered a neurodegenerative disorder and the survival of retinal neurons could also be influenced by N-acylethanolamines, our goal was to quantify changes in certain N-acylethanolamine species and their oxylipin derivatives in the retina of a mouse model for glaucoma. We also sought to identify relationships between these and parameters of glaucoma disease development, specifically intraocular pressure, visual acuity, and contrast sensitivity. Five N-acylethanolamine species and three NAE oxylipin derivatives were quantified in retina from young and aged DBA/2Crl mice. N-Acylethanolamines and NAE-oxylipins in retinal extracts were quantified against deuterated standards by isotope dilution gas chromatography-mass spectrometry. Levels (nmol/g dry weight) of N-arachidonoylethanolamine (anandamide; NAE 20:4) were significantly (p = 0.008) decreased in aged (2.875 ± 0.6702) compared to young animals (5.175 ± 0.971). Conversely, the anandamide oxylipin, 15(S)-HETE ethanolamide (15(S)-HETE EA), was significantly (p = 0.042) increased in aged (0.063 ± 0.009) compared to young animals (0.039 ± 0.011). Enzymatic depletion of the anandamide pool by 15-lipoxygenase and consequent accumulation of 15(S)-HETE ethanolamine may contribute to decreased visual function in glaucomatous mice. Since N-acylethanolamines effectively attenuate glaucoma pathogenesis and associated visual impairment, our data provides additional rationale and novel targets for glaucoma therapies.


Assuntos
Etanolaminas/análise , Glaucoma/fisiopatologia , Oxilipinas/análise , Retina/fisiopatologia , Fatores Etários , Animais , Modelos Animais de Doenças , Etanolaminas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glaucoma/metabolismo , Pressão Intraocular , Camundongos , Oxilipinas/metabolismo , Retina/metabolismo , Acuidade Visual
12.
Open Med Chem J ; 6: 29-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23525139

RESUMO

ChemVassa, a new chemical structure search technology, was developed to allow rapid in silico screening of compounds for hit and hit-to-lead identification in drug development. It functions by using a novel type of molecular descriptor that examines, in part, the structure of the small molecule undergoing analysis, yielding its "information signature." This descriptor takes into account the atoms, bonds, and their positions in 3-dimensional space. For the present study, a database of ChemVassa molecular descriptors was generated for nearly 16 million compounds (from the ZINC database and other compound sources), then an algorithm was developed that allows rapid similarity searching of the database using a query molecular descriptor (e.g., the signature of atorvastatin, below). A scoring metric then allowed ranking of the search results. We used these tools to search a subset of drug-like molecules using the signature of a commercially successful statin, atorvastatin (Lipitor™). The search identified ten novel compounds, two of which have been demonstrated to interact with HMG-CoA reductase, the macromolecular target of atorvastatin. In particular, one compound discussed in the results section tested successfully with an IC50 of less than 100uM and a completely novel structure relative to known inhibitors. Interactions were validated using computational molecular docking and an Hmg-CoA reductase activity assay. The rapidity and low cost of the methodology, and the novel structure of the interactors, suggests this is a highly favorable new method for hit generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA