RESUMO
von Willebrand disease (VWD) is the most common inherited bleeding disorder, and type 1 VWD is the most common VWD variant. Despite its frequency, diagnosis of type 1 VWD remains the subject of debate. In order to study the spectrum of type 1 VWD in the United States, the Zimmerman Program enrolled 482 subjects with a previous diagnosis of type 1 VWD without stringent laboratory diagnostic criteria. von Willebrand factor (VWF) laboratory testing and full-length VWF gene sequencing was performed for all index cases and healthy control subjects in a central laboratory. Bleeding phenotype was characterized using the International Society on Thrombosis and Haemostasis bleeding assessment tool. At study entry, 64% of subjects had VWF antigen (VWF:Ag) or VWF ristocetin cofactor activity below the lower limit of normal, whereas 36% had normal VWF levels. VWF sequence variations were most frequent in subjects with VWF:Ag <30 IU/dL (82%), whereas subjects with type 1 VWD and VWF:Ag ≥30 IU/dL had an intermediate frequency of variants (44%). Subjects whose VWF testing was normal at study entry had a similar rate of sequence variations as the healthy controls (14%). All subjects with severe type 1 VWD and VWF:Ag ≤5 IU/dL had an abnormal bleeding score (BS), but otherwise BS did not correlate with VWF:Ag. Subjects with a historical diagnosis of type 1 VWD had similar rates of abnormal BS compared with subjects with low VWF levels at study entry. Type 1 VWD in the United States is highly variable, and bleeding symptoms are frequent in this population.
Assuntos
Doença de von Willebrand Tipo 1/sangue , Adolescente , Testes de Coagulação Sanguínea , Hibridização Genômica Comparativa , Feminino , Variação Genética , Hemorragia/etiologia , Humanos , Masculino , Fenótipo , Análise de Sequência de DNA , Inquéritos e Questionários , Estados Unidos/epidemiologia , Adulto Jovem , Doença de von Willebrand Tipo 1/diagnóstico , Doença de von Willebrand Tipo 1/epidemiologia , Fator de von Willebrand/análise , Fator de von Willebrand/genéticaRESUMO
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.
Assuntos
Mutação em Linhagem Germinativa , Síndrome de Noonan/genética , Proteína SOS1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Modelos Biológicos , Modelos Moleculares , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/genética , Proteína SOS1/químicaRESUMO
Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.
Assuntos
Cromossomos Humanos Par 12/genética , Animais , Composição de Bases , Ilhas de CpG/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Genes/genética , Humanos , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Pan troglodytes/genética , Análise de Sequência de DNA , Deleção de Sequência/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Sintenia/genéticaRESUMO
VPS54 is a component of the Golgi-associated retrograde protein (GARP) complex of vesicle sorting proteins. A missense mutation of Vps54 is responsible for motor neuron disease in the wobbler mouse, but the human gene on chromosome 2p14-15 has not been evaluated as a disease gene. We completely sequenced the 22 coding exons from 96 individuals with sporadic ALS, 96 individuals with familial ALS, and 96 controls. Twenty-one novel SNPs were identified. The non-synonymous variant, T360A, was observed in one patient and 0/910 controls. Several polymorphic non-synonymous SNPs were also observed in patients and controls. These initial data suggest that mutations in VPS54 are not a major cause of ALS.
Assuntos
Esclerose Lateral Amiotrófica/genética , Complexo de Golgi/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte Vesicular/genética , Adulto , Idoso , Esclerose Lateral Amiotrófica/fisiopatologia , Éxons/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Sítios de Splice de RNA/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/).
Assuntos
Análise Mutacional de DNA/métodos , Mutação , Automação , DNA/genética , DNA/isolamento & purificação , Análise Mutacional de DNA/estatística & dados numéricos , Primers do DNA , Fluorescência , Genética Médica , Heterozigoto , Homozigoto , Humanos , Reação em Cadeia da Polimerase/métodos , SoftwareRESUMO
The ability to search for genetic variants that may be related to human disease is one of the most exciting consequences of the availability of the sequence of the human genome. Large cohorts of individuals exhibiting certain phenotypes can be studied and candidate genes resequenced. However, the challenge of analyzing sequence data from many individuals with accuracy, speed, and economy is great. This unit describes one set of software tools: Phred, Phrap, PolyPhred, and Consed. Coverage includes the advantages and disadvantages of these analysis tools, details for obtaining and using the software, and the results one may expect. The software is being continually updated to permit further automation of mutation analysis. Currently, however, at least some manual review is required if one wishes to identify 100% of the variants in a sample set.
Assuntos
Análise Mutacional de DNA/estatística & dados numéricos , Genética Médica/estatística & dados numéricos , Software , Algoritmos , Automação , DNA/genética , Corantes Fluorescentes , Variação Genética , Genoma Humano , Humanos , Análise de Sequência de DNA/estatística & dados numéricosRESUMO
Non-O1, non-O139 Vibrio cholerae can cause gastroenteritis and extraintestinal infections, but, unlike O1 and O139 strains of V. cholerae, little is known about the virulence gene content of non-O1, non-O139 strains and their phylogenetic relationship to other pathogenic V. cholerae. Comparative genomic microarray analysis of four pathogenic non-O1, non-O139 strains indicates that these strains are quite divergent from O1 and O139 strains. Genomic sequence analysis of a non-O1, non-O139 strain (AM-19226) that appeared particularly pathogenic in experimental animals suggests that this strain carries a type III secretion system (TTSS) that is related to the TTSS2 gene cluster found in a pandemic clone of Vibrio parahaemolyticus. The genes for this V. cholerae TTSS system appear to be present in many clinical and environmental non-O1, non-O139 strains, including at least one clone that is globally distributed. We hypothesize that the TTSS present in some pathogenic strains of non-O1, non-O139 V. cholerae may be involved in the virulence and environmental fitness of these strains.