Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 241(3): 1000-1006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37936346

RESUMO

We are becoming aware of a growing number of organisms that do not express genetic information equally from both parents as a result of an epigenetic phenomenon called genomic imprinting. Recently, it was shown that the entire paternal genome is repressed during the diploid phase of the life cycle of the liverwort Marchantia polymorpha. The deposition of the repressive epigenetic mark H3K27me3 on the male pronucleus is responsible for the imprinted state, which is reset by the end of meiosis. Here, we put these recent reports in perspective of other forms of imprinting and discuss the potential mechanisms of imprinting in bryophytes and the causes of its evolution.


Assuntos
Briófitas , Marchantia , Animais , Marchantia/genética , Impressão Genômica , Estágios do Ciclo de Vida
2.
PLoS Genet ; 16(7): e1008964, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716939

RESUMO

Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants.


Assuntos
Arabidopsis/genética , Cromatina/genética , Evolução Molecular , Histonas/genética , Arabidopsis/classificação , Eucariotos , Genoma de Planta/genética , Histonas/classificação , Família Multigênica/genética
3.
New Phytol ; 210(1): 310-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26612464

RESUMO

Relatively little is known about species-level genetic diversity in flowering plants outside the eudicots and monocots, and it is often unclear how to interpret genetic patterns in lineages with whole-genome duplications. We addressed these issues in a polyploid representative of Hydatellaceae, part of the water-lily order Nymphaeales. We examined a transcriptome of Trithuria submersa for evidence of recent whole-genome duplication, and applied transcriptome-derived microsatellite (expressed-sequence tag simple-sequence repeat (EST-SSR)) primers to survey genetic variation in populations across its range in mainland Australia. A transcriptome-based Ks plot revealed at least one recent polyploidization event, consistent with fixed heterozygous genotypes representing underlying sets of homeologous loci. A strong genetic division coincides with a trans-Nullarbor biogeographic boundary. Patterns of 'allelic' variation (no more than two variants per EST-SSR genotype) and recently published chromosomal evidence are consistent with the predicted polyploidization event and substantial homozygosity underlying fixed heterozygote SSR genotypes, which in turn reflect a selfing mating system. The Nullarbor Plain is a barrier to gene flow between two deep lineages of T. submersa that may represent cryptic species. The markers developed here should also be useful for further disentangling species relationships, and provide a first step towards future genomic studies in Trithuria.


Assuntos
Magnoliopsida/genética , Filogeografia , Poliploidia , Transcriptoma/genética , Alelos , Austrália , Duplicação Gênica , Marcadores Genéticos , Variação Genética , Heterozigoto , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de RNA
4.
Curr Biol ; 33(20): 4367-4380.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738971

RESUMO

The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2.


Assuntos
Arabidopsis , Complexo Repressor Polycomb 2 , Animais , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
5.
Plant Reprod ; 34(4): 373-383, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914165

RESUMO

Genomic imprinting results in the biased expression of alleles depending on if the allele was inherited from the mother or the father. Despite the prevalence of sexual reproduction across eukaryotes, imprinting is only found in placental mammals, flowering plants, and some insects, suggesting independent evolutionary origins. Numerous hypotheses have been proposed to explain the selective pressures that favour the innovation of imprinted gene expression and each differs in their experimental support and predictions. Due to the lack of investigation of imprinting in land plants, other than angiosperms with triploid endosperm, we do not know whether imprinting occurs in species lacking endosperm and with embryos developing on maternal plants. Here, we discuss the potential for uncovering additional examples of imprinting in land plants and how these observations may provide additional support for one or more existing imprinting hypotheses.


Assuntos
Placenta , Sementes , Alelos , Animais , Metilação de DNA , Endosperma/genética , Impressão Genômica , Plantas/genética , Gravidez , Sementes/genética
6.
Curr Biol ; 31(1): 182-191.e5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33096036

RESUMO

Diversification of histone variants is marked by the acquisition of distinct motifs and functional properties through convergent evolution.1-4 H2A variants are distinguished by specific C-terminal motifs and tend to be segregated within defined domains of the genome.5,6 Whether evolution of these motifs pre-dated the evolution of segregation mechanisms or vice versa has remained unclear. A suitable model to address this question is the variant H2A.W, which evolved in plants through acquisition of a KSPK motif7 and is tightly associated with heterochromatin.4 We used fission yeast, where chromatin is naturally devoid of H2A.W, to study the impact of engineered chimeras combining yeast H2A with the KSPK motif. Biochemical assays showed that the KSPK motif conferred nucleosomes with specific properties. Despite uniform incorporation of the engineered H2A chimeras in the yeast genome, the KSPK motif specifically affected heterochromatin composition and function. We conclude that the KSPK motif promotes chromatin properties in yeast that are comparable to the properties and function of H2A.W in plant heterochromatin. We propose that the selection of functional motifs confer histone variants with properties that impact primarily a specific chromatin state. The association between a new histone variant and a preferred chromatin state can thus provide a setting for the evolution of mechanisms that segregate the new variant to this state, thereby enhancing the impact of the selected properties of the variant on genome activity.


Assuntos
Evolução Molecular , Heterocromatina/genética , Histonas/genética , Proteínas de Plantas/genética , Proteínas de Schizosaccharomyces pombe/genética , Motivos de Aminoácidos/genética , Arabidopsis/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Selaginellaceae/genética , Biologia Sintética
7.
Nat Cell Biol ; 23(4): 391-400, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833428

RESUMO

Mobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility. In the Arabidopsis chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1), we identify two conserved binding domains for the histone variant H2A.W, which marks plant heterochromatin. DDM1 is necessary and sufficient for the deposition of H2A.W onto potentially mobile TEs, yet does not act on TE fragments or host protein-coding genes. DDM1-mediated H2A.W deposition changes the properties of chromatin, resulting in the silencing of TEs and, therefore, prevents their mobility. This distinct mechanism provides insights into the interplay between TEs and their host in the contexts of evolution and disease, and potentiates innovative strategies for targeted gene silencing.


Assuntos
Proteínas de Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Histonas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Genoma de Planta/genética , Heterocromatina/genética
8.
Curr Biol ; 31(24): 5522-5532.e7, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34735792

RESUMO

Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.


Assuntos
Marchantia , Evolução Molecular , Haploidia , Marchantia/genética , Filogenia , Cromossomos Sexuais/genética
9.
Nat Plants ; 6(10): 1250-1261, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895530

RESUMO

Information in the genome is not only encoded within sequence or epigenetic modifications, but is also found in how it folds in three-dimensional space. The formation of self-interacting genomic regions, named topologically associated domains (TADs), is known as a key feature of genome organization beyond the nucleosomal level. However, our understanding of the formation and function of TADs in plants is extremely limited. Here we show that the genome of Marchantia polymorpha, a member of a basal land plant lineage, exhibits TADs with epigenetic features similar to those of higher plants. By analysing various epigenetic marks across Marchantia TADs, we find that these regions generally represent interstitial heterochromatin and their borders are enriched with Marchantia transcription factor TCP1. We also identify a type of TAD that we name 'TCP1-rich TAD', in which genomic regions are highly accessible and are densely bound by TCP1 proteins. Transcription of TCP1 target genes differs on the basis gene location, and those in TCP1-rich TADs clearly show a lower expression level. In tcp1 mutant lines, neither TCP1-bound TAD borders nor TCP1-rich TADs display drastically altered chromatin organization patterns, suggesting that, in Marchantia, TCP1 is dispensable for TAD formation. However, we find that in tcp1 mutants, genes residing in TCP1-rich TADs have a greater extent of expression fold change as opposed to genes that do not belong to these TADs. Our results suggest that, besides standing as spatial chromatin-packing modules, plant TADs function as nuclear microcompartments associated with transcription factor activities.


Assuntos
Cromatina/química , Cromatina/metabolismo , Genoma de Planta , Marchantia/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Epigênese Genética , Marchantia/metabolismo , Relação Estrutura-Atividade
10.
Curr Biol ; 30(4): 573-588.e7, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004456

RESUMO

Genome packaging by nucleosomes is a hallmark of eukaryotes. Histones and the pathways that deposit, remove, and read histone modifications are deeply conserved. Yet, we lack information regarding chromatin landscapes in extant representatives of ancestors of the main groups of eukaryotes, and our knowledge of the evolution of chromatin-related processes is limited. We used the bryophyte Marchantia polymorpha, which diverged from vascular plants circa 400 mya, to obtain a whole chromosome genome assembly and explore the chromatin landscape and three-dimensional genome organization in an early diverging land plant lineage. Based on genomic profiles of ten chromatin marks, we conclude that the relationship between active marks and gene expression is conserved across land plants. In contrast, we observed distinctive features of transposons and other repetitive sequences in Marchantia compared with flowering plants. Silenced transposons and repeats did not accumulate around centromeres. Although a large fraction of constitutive heterochromatin was marked by H3K9 methylation as in flowering plants, a significant proportion of transposons were marked by H3K27me3, which is otherwise dedicated to the transcriptional repression of protein-coding genes in flowering plants. Chromatin compartmentalization analyses of Hi-C data revealed that repressed B compartments were densely decorated with H3K27me3 but not H3K9 or DNA methylation as reported in flowering plants. We conclude that, in early plants, H3K27me3 played an essential role in heterochromatin function, suggesting an ancestral role of this mark in transposon silencing.


Assuntos
Cromatina/fisiologia , Elementos de DNA Transponíveis/fisiologia , Embriófitas/fisiologia , Evolução Molecular , Heterocromatina/fisiologia
11.
Nat Commun ; 9(1): 5283, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538242

RESUMO

Evolutionary mechanisms underlying innovation of cell types have remained largely unclear. In multicellular eukaryotes, the evolutionary molecular origin of sperm differentiation is unknown in most lineages. Here, we report that in algal ancestors of land plants, changes in the DNA-binding domain of the ancestor of the MYB transcription factor DUO1 enabled the recognition of a new cis-regulatory element. This event led to the differentiation of motile sperm. After neo-functionalization, DUO1 acquired sperm lineage-specific expression in the common ancestor of land plants. Subsequently the downstream network of DUO1 was rewired leading to sperm with distinct morphologies. Conjugating green algae, a sister group of land plants, accumulated mutations in the DNA-binding domain of DUO1 and lost sperm differentiation. Our findings suggest that the emergence of DUO1 was the defining event in the evolution of sperm differentiation and the varied modes of sexual reproduction in the land plant lineage.


Assuntos
Evolução Molecular , Células Germinativas Vegetais/citologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Clorófitas/classificação , Clorófitas/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Células Germinativas Vegetais/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA