Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(27): e2000413, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133771

RESUMO

Self-propelled autonomous nano/microswimmers are at the forefront of materials science. These swimmers are expected to operate in highly confined environments, such as between the grains of soil or in the capillaries of the human organism. To date, little attention is paid to the problem that in such a confined environment the fuel powering catalytic nano/microswimmers can be exhausted quickly and the space can be polluted with the product of the catalytic reaction. In addition, the motion of the nano/microswimmers may be influenced by the confinement. These issues are addressed here, showing the influence of the size of the capillary and length of the micromotor on the motion and the influence of the depletion of the fuel and excess of the exhaust products. Theoretical modeling is provided as well to bring further insight into the observations. This article shows challenges that these systems face and stimulates research to overcome them.

2.
Nano Lett ; 17(5): 2833-2838, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394607

RESUMO

Graphene nanobubbles are of significant interest due to their ability to trap mesoscopic volumes of gas for various applications in nanoscale engineering. However, conventional protocols to produce such bubbles are relatively elaborate and require specialized equipment to subject graphite samples to high temperatures or pressures. Here, we demonstrate the formation of graphene nanobubbles between layers of highly oriented pyrolytic graphite (HOPG) with electrolysis. Although this process can also lead to the formation of gaseous surface nanobubbles on top of the substrate, the two types of bubbles can easily be distinguished using atomic force microscopy. We estimated the Young's modulus, internal pressure, and the thickness of the top membrane of the graphene nanobubbles. The hydrogen storage capacity can reach ∼5 wt % for a graphene nanobubble with a membrane that is four layers thick. The simplicity of our protocol paves the way for such graphitic nanobubbles to be utilized for energy storage and industrial applications on a wide scale.

3.
Chemistry ; 22(1): 355-60, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26526004

RESUMO

Self-propelled miniaturized machines harness the chemical potential of their environment for movement. Locomotion of chemically powered micromotors have been hugely dependent on the surroundings. The use of pH to alter the mobility of micromotors is demonstrated in this work through the manipulation of hydrogen peroxide chemistry in different acidity/alkalinity. The sequential addition of sodium hydroxide to increase the pH of the solution led to a consequent increase in activity of micromotors. Meanwhile, addition of hydrochloric acid compromised the structural integrity of the microstructures, culminating in locomotive changes. Such dramatic changes in activity and velocities of the micromotors allow the usage of this behavior for pH detection. This concept was illustrated with Janus silver micromotors and tubular bimetallic Cu/Pt micromotors. Alteration of pH serves as a useful general strategy for increasing hydrogen peroxide decomposition for enhanced oxygen-bubble propulsion in catalytic micromotors.

4.
Chemistry ; 21(1): 58-72, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25410790

RESUMO

The rise of miniaturized artificial self-powered devices, demonstrating autonomous motion, has brought in new considerations from the environmental perspective. This review addresses the interplay between these nano/micro/macromotors and the environment, recent advances, and their applications in pollution management. Such self-propelled devices are able to actuate chemical energy into mechanical motion in situ, adding another powerful dimension towards solving environmental problems. Use of synthetic nano/micro/macromotors has demonstrated potential in environmental remediation, both in pollutant removal and contaminant degradation, owing to motion-induced mixing. At the same time, the chemical environment exerts influence on the locomotion of the motors. These sensitized self-powered devices demonstrate capabilities for being deployed as sensors and their chemotactic behaviors show efficacy to act as first responders towards a chemical leakage. Thus, the notion of a self-propelling entity also entails further investigation into its inherent toxicity and possible implications as a pollutant. Future challenges and outlook of the use of these miniaturized devices are discussed, with specific regard to the fields of environmental remediation and monitoring, as we move towards their wider acceptance. We believe that these tiny machines will stand up to the task as solutions for environmental sustainability in the 21st century.

5.
Chemistry ; 20(15): 4292-6, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652757

RESUMO

The availability of drinking water is of utmost importance for the world population. Anthropogenic pollutants of water, such as heavy-metal ions, are major problems in water contamination. The toxicity assays used range from cell assays to animal tests. Herein, we replace biological toxicity assays, which use higher organisms, with artificial inorganic self-propelled microtubular robots. The viability and activity of these robots are negatively influenced by heavy metals, such as Pb(2+) , in a similar manner to that of live fish models. This allows the establishment of a lethal dose (LD50 ) of heavy metal for artificial inorganic microfish robots. The self-propelled microfish robots show specific response to Pb(2+) compared to other heavy metals, such as Cd(2+) , and can be used for selective determination of Pb(2+) in water. It is a first step towards replacing the biological toxicity assays with biomimetic inorganic autonomous robotic systems.

6.
Chemphyschem ; 15(14): 2922-9, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25044516

RESUMO

Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers' (HU), Hofmann's (HO) and Staudenmaier's (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure-function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both Pb(II) and Cd(II) is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up.

7.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269100

RESUMO

The advancement of additive manufacturing (AM) for metal matrix nanocomposites (MMNCs) is gaining enormous attention due to their potential improvement of physical and mechanical performance. When using nanostructured additives as reinforcements in 3D printed metal composites and with the aid of selective laser melting (SLM), the mechanical properties of the composites can be tailored. The nanostructured additive AEROSIL® fumed silica is both cost-effective and beneficial in the production of MMNCs using SLM. In this study, both hydrophobic and hydrophilic fumed silicas were shown to successfully achieve homogenous blends with commercial 316L stainless steel powder. The powder blends, which exhibited better flow, were then used to fabricate samples using SLM. The samples' microstructure demonstrated that smaller grains were present in the composites, resulting in improvements in mechanical properties by grain refinement compared to those of 316L stainless steel samples.

8.
J Hazard Mater ; 387: 121256, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31951979

RESUMO

Flexible plastic packaging waste causes serious environmental issues due to challenges in recycling. This study investigated the conversion of flexible plastic packaging waste with 11.8 and 27.5 wt.% polyethylene terephthalate (PET) (denoted as PET-12 and PET-28, respectively) into oil and multi-walled carbon nanotubes (MWCNTs). The mixtures were initially pyrolyzed and the produced volatiles were processed over 9.0 wt.% Fe2O3 supported on ZSM-5 (400 °C) to remove oxygenated hydrocarbons (catalytic cracking of terephthalic and benzoic acids) that deteriorate oil quality. The contents of oxygenated hydrocarbons were decreased in oil from 4.6 and 9.4 wt.% per mass of PET-12 and PET-28, respectively, to undetectable levels. After catalytic cracking, the oil samples had similar contents of gasoline, diesel and heavy oil/wax fractions. The non-condensable gas was converted into MWCNTs over 0.9 wt.% Ni supported on CaCO3 (700 °C). The type of plastic packaging influenced the yields (2.4 and 1.5 wt.% per mass of PET-12 and PET-28, respectively) and the properties of MWCNTs due to the differences in gas composition. Regarding the electrocatalytic application, both MWCNTs from PET-12 and PET-28 outperformed commercial MWCNTs and Pt-based electrodes during oxygen evolution reaction, suggesting that MWCNTs from flexible plastic packaging can potentially replace conventional electrode materials.

9.
ACS Nano ; 10(5): 5041-50, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27135613

RESUMO

Synthetic autonomously moving nano and micromotors are in the forefront of nanotechnology. Different sizes of nano and micromotors have been prepared, but the systematic study of the influence of their sizes on motion is lacking. We synthesized different sizes of tubular micro/nanomotors by membrane template-assisted electrodeposition. The influence of dimensions on the dynamics of micro/nanotubes was studied at a significantly reduced scale than rolled-up microtubes, down to the nanometer regime. Both the geometric parameters and the chemical environment can affect the dynamics of micro/nanotubes. The bubble size and ejection frequency were investigated in correlation with the velocity of micro/nanotubes. The comparison between different sizes of micro/nanotubes showed that geometric parameters of micro/nanotubes will influence the velocity of micro/nanotubes at moderate fuel concentrations. Furthermore, it also affects the activity of micro/nanotubes at low fuel concentrations and imposes limitations on the velocity at very high fuel concentrations. Nanotubes with nanometer-sized openings need a higher concentration of H2O2 to be activated. Larger tubes can possess a higher absolute value of velocity than smaller tubes, but do not necessarily have a higher velocity by body lengths per unit time. Insight into bubble ejection/propulsion cycle is also provided. The results presented here provide important implications for the consideration of dimensions in the fabrication of tubular micro/nanomotors.

10.
ACS Nano ; 10(3): 3543-52, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26919161

RESUMO

Controlling the environment in which bubble-propelled micromotors operate represents an attractive strategy to influence their motion, especially when the trigger is as simple as light. We demonstrate that spiropyrans, which isomerize to amphiphilic merocyanines under UV irradiation, can act as molecular switches that drastically affect the locomotion of the micrometer-sized engines. The phototrigger could be either a point or a field source, thus allowing different modes of control to be executed. A whole ensemble of micromotors was repeatedly activated and deactivated by just altering the spiropyran-merocyanine ratio with light. Moreover, the velocity of individual micromotors was altered using a point irradiation source that caused only localized changes in the environment. Such selective manipulation, achieved here with an optical microscope and a photochromic additive in the medium, reveals the ease of the methodology, which can allow micro- and nanomotors to reach their full potential of not just stochastic, but directional controlled motion.

11.
Chem Commun (Camb) ; 51(48): 9899-902, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25997890

RESUMO

Two-dimensional (2D) transitional metal dichalcogenides (TMDCs) have been receiving significant research interest due to their unique physical and electronic properties. We report the design of a MoS2 based motor that can display simultaneous self-exfoliation and autonomous motion at the surface of water. Exfoliation of bulk MoS2via sodium intercalation offers an attractive way to obtain solution-phase 2D MoS2 nanosheets on a large scale. The motion of the MoS2 particles results from the surface tension gradients generated by the naphthalene distributed in the MoS2 particles. A combination of self-exfoliation and propulsion in an unmodified water environment hence leads to a new platform which holds great promise for new applications of TMDC materials in small scale motors.

12.
Chem Commun (Camb) ; 50(100): 15849-51, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25347401

RESUMO

A fuel-free autonomous self-propelled motor is illustrated. The motor is powered by the chemistry of calcium carbide and utilising water as a co-reactant, through a polymer encapsulation strategy. Expulsion of acetylene bubbles powers the capsule motor. This is an important step, going beyond the toxic hydrogen peroxide fuel used normally, to find alternative propellants for self-propelled machines.


Assuntos
Acetileno/química , Cápsulas/química , Acetileno/análogos & derivados , Etanol/química , Peróxido de Hidrogênio/química , Polímeros/química , Sulfonas/química , Água/química
13.
Nanoscale ; 6(19): 11359-63, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25143056

RESUMO

We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ∼100 bodylengths per s (∼1 mm s(-1)). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks.


Assuntos
Nanopartículas Metálicas/química , Impressão Molecular/métodos , Musa/química , Musa/ultraestrutura , Platina/química , Robótica/instrumentação , Catálise , Células Cultivadas , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Miniaturização , Movimento (Física) , Navios/instrumentação
14.
Chem Asian J ; 7(4): 759-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22298372

RESUMO

Graphene research is currently at the frontier of electrochemistry. Many different graphene-based materials are employed by electrochemists as electrodes in sensing and in energy-storage devices. Because the methods for their preparation are inherently different, graphene materials are expected to exhibit different electrochemical behaviors depending on the functionalities and density of defects present. Electrochemical treatment of these "chemically modified graphenes" (CMGs) represents an easy approach to alter surface functionalities and consequently tune the electrochemical performance. Herein, we report a preliminary electrochemical characterization of four common chemically modified graphenes, namely: graphene oxide, graphite oxide, chemically reduced graphene oxide, and thermally reduced graphene oxide. These CMGs were compared with graphite as a reference material. Cyclic voltammetry was used to ascertain the chemical functionalities present and to understand the potential ranges in which the materials were electroactive. Electrochemical treatment with either an oxidative or a reductive fixed potential were then carried out to activate these chemically modified graphenes. The effects of such electrochemical treatments on their electrocatalytic properties were then investigated by cyclic voltammetry in the presence of well-known redox probes, such as [Fe(CN)(6)](4-/3-), Fe(3+/2+), [Ru(NH(3))(6)](2+/3+), and ascorbic acid. Thermally reduced graphene oxide exhibited the best electrochemical behavior amongst all of the CMGs, with the fastest rate of heterogeneous electron transfer (HET) and the lowest overpotentials. These findings will have far-reaching consequences for the evaluation of different CMGs as electrode materials in electrochemical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA