Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Clin Pediatr Dent ; 48(1): 91-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239161

RESUMO

This study aimed to quantify the predictability of arch expansion in children with early mixed dentition treated with the Invisalign First® system and evaluate the clinical factors for the predictability of arch expansion. Pretreatment, predicted and posttreatment digital models from Invisalign's ClinCheck® software were obtained for 90 children with mean (standard deviation) age of 8.42 (0.93) who planned arch expansion. Arch width measurements were collected using Invisalign's arch width table. The predictability of expansion was calculated by comparing the amount of expansion achieved with the predicted expansion. Linear regression analysis was used to evaluate clinical factors associated with predictability of expansion. The predictability of the expansion of the maxillary teeth was as follows: 71.1% primary canines (n = 55), 67.5% first primary molars (n = 46), 65.2% second primary molars (n = 79), and 53.4% first permanent molars (n = 90); the predictability of the expansion of the mandibular teeth was 81.1% primary canines (n = 31), 81.2% first primary molars (n = 51), 77.8% second primary molars (n = 80), and 69.4% first permanent molars (n = 90). The predictability of arch expansion was significantly higher in the mandibular arch compared to the maxillary arch and significantly lower in the permanent first molar than in the other primary teeth. Predictability decreased significantly as the amount of predicted expansion per aligner increased in the upper and lower permanent first molars, primary second molars, and upper primary canines. Predictability significantly increased when buccal or palatal attachments were placed on the bilateral side compared to cases without attachment at the upper permanent first and primary second molars. The predictability of arch expansion using the Invisalign First® system varies according to arch and tooth type. The amount of predicted expansion per aligner and the number of attachments to the maxillary teeth are potential clinical factors that can affect the predictability of expansion.


Assuntos
Má Oclusão , Aparelhos Ortodônticos Removíveis , Criança , Humanos , Dentição Mista , Estudos Retrospectivos , Má Oclusão/terapia , Dente Molar
2.
Opt Express ; 21 Suppl 4: A607-15, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24104488

RESUMO

We investigate photovoltaic characteristics of crystalline Si solar cells with microhole-patterned surface. We compare patterned samples with different hole-widths and periods with a planar counterpart. From the finite-difference time-domain simulation, the patterned and planar samples are expected to have similar short circuit current density, J(sc) (difference: 1.2%). In contrast, the difference in the measured J(sc) is as large as 12.6%. The simulated optical field patterns reveal that the sample with more significantly concentrated light near the surface has higher quantum efficiency due to more efficient carrier collection. We report the highest efficiency of 15.6% among the hole-patterned solar cells.

3.
J Nanosci Nanotechnol ; 12(5): 4228-32, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852379

RESUMO

A series of novel photoactive conjugated terpolymers based on N-alkyl carbazole, 9,9-didecylfluorene, and bis(thienyl)benzothiadiazole were synthesized by the Pd-catalyzed Suzuki polymerization method with various molar ratios of the carbazole derivatives. Electron-deficient benzothiadiazole and electron-rich carbazole moieties were incorporated into the polymer backbone to obtain the broad absorption spectrum and to improve the hole-transporting characteristics, respectively. The polymer solar cell (PSC) was fabricated with a layered structure of ITO/PEDOT: PSS/polymer:C71-PCBM (1:3)/LiF/Al. The best performance of PSC was obtained at P1:C71-PCBM whose reaches a power conversion efficiency (PCE) of 2.62%, with a short circuit current density (J(SC)) of 8.61 mA/cm2, an open circuit voltage (V(OC)) of 0.82 V, and a fill factor (FF) of 0.37 under AM 1.5 G irradiation (100 mW/cm2).

4.
J Nanosci Nanotechnol ; 12(5): 4132-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852358

RESUMO

Semiconducting polymers composed of 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)dithiophenes (F8T2s) and (2E,2'E)-3,3'-(2,5-bis(octyloxy)-1,4-phenylene) bis(2-(5-bromothiophene-2-yl)acrylonitrile)s (OPTANs) have been synthesized through Pd(O)-catalyzed Suzuki coupling polymerization by controlling the monomer ratio. The synthesized polymers were confirmed to exhibit good solubility in common solvents, simple processability, and thermal stability up to 350 degrees C. The highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and optical band-gap energies were determined using cyclic voltammetry (CV) and UV-visible spectrometry. The synthesized polymers showed their maximum absorption and edge at around 520 and 650 nm, respectively. The optical band-gap energies of the polymers were determined to be 1.89 eV. Bulk heterojunction organic solar cells were fabricated using the conjugated polymer as the electron donor, and 6,6-phenyl C61-butyric acid methylester (PC61BM) or 6,6-phenyl C71-butyric acid methylester (PC71BM) as the electron acceptor. The power conversion efficiencies (PCEs) of the solar cells based on polymer:PC71BM (1:1) and polymer:PC71BM (1:2) were 0.68% and 1.22%, respectively, under air mass 1.5 global (AM 1.5 G) illumination at 100 mW/cm2.

5.
J Nanosci Nanotechnol ; 12(5): 4256-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852385

RESUMO

We report the PCDTBT {Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]}, an alternating copolymer of 2,7-carbazole and dithienyl-2,1,3-benzothiazole, has high molecular weight and narrow molecular weight distribution. Our PCDTBT can be successfully prepared as good yield by using tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] catalyst instead of Pd2dba3/P(o-Tol)3 catalyst. From the UV/Vis absorption spectroscopy, we can observe that absorption bands of PCDTBT are bathochromically shifted by increasing the molecular weight, that is to say, our high molecular weight PCDTBT can absorb much longer wavelength light compare to low molecular weight PCDTBT. The best performance can be obtained from device based on the mixture of PCDTBT (polymer-30) and PC70BM {[6,6]-phenyl C71-butyric acid methyl ester} (1:4) as an active layer, which shows 4.50% of PCE with 10.1 mA/cm2 of short-circuit current density (J(SC)), 0.85 V of open-circuit voltage (V(OC)), and 52.3% of fill factor which is very similar with Leclerc's published result.

6.
J Nanosci Nanotechnol ; 11(1): 326-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446449

RESUMO

Organic photovoltaic cells (OPVs) with a highly conductive poly 3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) layer as an anode and that were modified with the addition of some organic solvents such as sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG) were fabricated without the use of transparent conducting oxide (TCO). The conductivity of the PEDOT:PSS film that was modified with each additive was enhanced by three orders of magnitude. According to the atomic force microscopy (AFM) study, the conductivity enhancement might have been related to the better connections between the conducting PEDOT chains. The TCO-free solar cells with a modified PEDOT:PSS layer and an active layer composed of poly (3-hexylthiophene) (P3HT) and phenyl [6, 6] C61 butyric acid methyl ester (PCBM) performed as well as the indium-tin-oxide (ITO)-based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells with a DMSO-, So + DMSO-, and EG-modified PEDOT:PSS layer reached 3.51, 3.64, and 3.77%, respectively, under an illumination of AM 1.5 (100 mW/cm2).

7.
J Nanosci Nanotechnol ; 11(5): 4279-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780442

RESUMO

A series of dithienosilole-based copolymers, poly [(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,2'-bithiazole)-5,5'-diyl] (P2), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2, 6-diyl-alt-(10 -methyl-phenothiazine)-3,7-diyl](P3), poly[(4,4'-bis(2-hexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-9,10-anthracene)-5,5'-diyl] (P4) were synthesized by the Pd-catalyzed Stille polymerization method. Electron-deficient benzothiadiazole and bithiazole units and electron-rich phenothiazine and anthracene moieties were incorporated into the polymer backbone to obtain the broad absorption spectrum and to improve the hole-transporting characteristics, respectively. The polymer solar cell (PSC) was fabricated with a layered structure of ITO/PEDOT:PSS/polymer:C71-PCBM (1:3)/LiF/Al. The best performance of PSC was obtained at P3:C71-PCBM which reaches a power conversion efficiency (PCE) of 1.18%, with a short circuit current density (J(sc)) of 4.75 mA/cm2, an open circuit voltage (V(oc)) of 0.71 V, and a fill factor (FF) of 0.35 under AM 1.5G irradiation (100 mW/cm2).

8.
J Nanosci Nanotechnol ; 11(5): 4367-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780459

RESUMO

An alternating conjugated copolymer composed of pyrene and bithiophene units, poly(DHBT-alt-PYR) has been synthesized. The synthesized polymer was found to exhibit good solution processibility and thermal stability, losing less than 5% of their weight on heating to approximately 370 degrees C. The synthesized polymer showed its maximum absorption and peak PL emission at 401 and 548 nm, respectively. The optical band gap energy of the polymer was determined by absorption onset to be 2.64 eV. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the polymer was determined to be -5.48 and -2.84 eV by cyclic voltametry (CV) and the optical band gap. The polymer photovoltaic devices were fabricated with a typical sandwich structure of ITO/PEDOT:PSS/active layer/LiF/Al using poly(DHBT-alt-PYR) as an electron donor and C60-PCBM or C70-PCBM as electron acceptors. The open circuit voltage, short circuit current and fill factor of the device using C70-PCBM as an acceptor were 0.75 V, 3.80 mA/cm2 and 0.28, respectively, and the maximum power conversion efficiency of the device was 0.80%.

9.
J Nanosci Nanotechnol ; 11(7): 5876-82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121624

RESUMO

A series of new organic semiconducting copolymers composed of {(2E,2'E)-3,3'-[2,5-bis(octyloxy)-1,4-phenylene]-bis[2-(thiophen-2-yl)acrylonitrile]}(OPTAN) and 10(2'-ethylhexylphenothiazine) (PTZ) monomers, (the copolymers are hereafter referred to as poly(OPTAN-co-PTZ)s), were synthesized by using Suzuki coupling polymerization in which the monomer ratios were controlled. An increase in the OPTAN content shifted the peak and onset absorption of the copolymers to the longer wavelength regions, which resulted in a decrease in the band gap energy. The maximum UV absorption of the polymer films was in the range 523-540 nm and the optical band gap energies were in the range 1.90-1.87 eV. Energy levels of the highest occupied molecular orbital (HOMO) of the polymers were determined by cyclic voltammetry (CV). The HOMO energy level of the copolymers was between -5.07 and -5.12 eV. Photovoltaic devices were fabricated by using the copolymers as the p-type donor and C60-PCBM or C70-PCBM as the electron acceptors. The device with poly(50OPTAN-alt-50PTZ) and C70-PCBM showed the best performance among the fabricated devices; the open circuit voltage, short circuit current, fill factor, and maximum power conversion efficiency of this device were 0.79 V, 5.25 mA/cm2, 0.30, and 1.25%, respectively.

10.
J Nanosci Nanotechnol ; 9(7): 4285-92, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916444

RESUMO

We analyzed TiO2 thin film growth on glass particles in a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and numerically investigated the effects of several process variables on the film growth. An increase in titanium tetra-isopropoxide (TTIP) or O2 partial pressure can enhance the film growth rate on the particles because the concentration of TiO(x), which is the main precursor for thin film growth, becomes higher in the reactor. As the particle diameter decreases, the TiO(x) concentration increases and the thin film on the particles grows more quickly. The neutral-radical reaction between TTIP and O radicals for TiO(x) generation in TTIP + O2 plasmas can be important to enhance the thin film growth rate on the particles. The growth rate of TiO2 film predicted in this study was 1 approximately 20 nm/min, which is in good agreement with the published experimental results. This study suggests that a uniform TiO2 thin film on particles can be obtained by using a rotating cylindrical PCVD reactor.

11.
J Nanosci Nanotechnol ; 9(12): 7034-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19908722

RESUMO

Aiming at improving the phase behavior of the OPVCs, we have designed and synthesized a series of C60 and C70 derivatives, which showed high electron mobility, electron affinity, and good solubility. These methanofullerene acceptor materials having ethyleneoxy substituent, PCBEs, were synthesized from the reaction of fullerene C60 or C70 with each hydrizide. Device performances of OPVC using the mixture of P3HT and PCBEs as an active layer were measured under illumination of 100 mW/cm2 AM 1.5G simulated light. Pristine OPVC using P3HT:compound 3 showed 2.59% of power conversion efficiency, which is much higher than 1.65% of pristine P3HT:PCBM device. The electrochemical and photophysical properties of these methanofullerene derivatives were examined by using cyclicvoltammetry and UV-Vis spectroscopy, respectively. We revealed that ethyleneoxy substituted methanofullerenes can be used as a good candidate for acceptor materials in OPVCs.

12.
RSC Adv ; 9(36): 20733-20741, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35515564

RESUMO

A non-fullerene small molecule acceptor, SF-HR composed of 3D-shaped spirobifluorene and hexyl rhodanine, was synthesized for use in bulk heterojunction organic solar cells (OSCs). It possesses harmonious molecular aggregation between the donor and acceptor, due to the interesting diagonal molecular shape of SF-HR. Furthermore, the energy level of SF-HR matches well with that of the donor polymer, poly(3-hexyl thiophene) (P3HT) in this system which can affect efficient charge transfer and transport properties. As a result, OSCs made from a P3HT:SF-HR photoactive layer exhibited a power conversion efficiency rate of 4.01% with a high V OC of 1.00 V, a J SC value of 8.23 mA cm-2, and a FF value of 49%. Moreover, the P3HT:SF-HR film showed superior thermal and photo-stability to P3HT:PC71BM. These results indicate that SF-HR is specialized as a non-fullerene acceptor for use in high-performance OSCs.

13.
Data Brief ; 27: 104817, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31799351

RESUMO

The data provided in this data set is the study of organic-inorganic hybrid perovskite solar cells fabricated through incorporating the small amounts of ammonium halide NH4X (X = F, Cl, Br, I) additives into a CH3NH3PbI3 (MAPbI3) perovskite solution and is published as "High-Performance CH3NH3PbI3 Inverted Planar Perovskite Solar Cells via Ammonium Halide Additives", available in Journal of Industrial and Engineering Chemistry [1]. A compact and uniform perovskite absorber layer with large perovskite crystalline grains, is realized by simply incorporating small amounts of additives into precursor solutions, and utilizing the anti-solvent engineering technique to control the nucleation and growth of perovskite crystal, turning out the enhanced device efficiency (NH4F: 14.88 ± 0.33%, NH4Cl: 16.63 ± 0.21%, NH4Br: 16.64 ± 0.35%, and NH4I: 17.28 ± 0.15%) compared to that of a reference MAPbI3 device (Ref.: 12.95 ± 0.48%). In addition, this simple technique of ammonium halide addition to precursor solutions increase the device reproducibility as well as long term stability.

14.
ACS Appl Mater Interfaces ; 11(33): 30098-30107, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31357856

RESUMO

Most non-fullerene acceptors (NFAs) are designed in a complex planar molecular conformation containing fused aromatic rings in high-efficiency organic solar cells (OSCs). To obtain the final molecules, however, numerous synthetic steps are necessary. In this work, a novel simple-structured NFA containing alkoxy-substituted benzothiadiazole and a rhodanine end group (BTDT2R) is designed and synthesized. We also investigate the photovoltaic properties of BTDT2R-based OSCs employing representative polymer donors (wide band gap and high-crystalline P3HT, medium band gap and semicrystalline PPDT2FBT, and narrow band gap and low-crystalline PTB7-Th) to compare the performance capabilities of fullerene acceptor-based OSCs, which are well matched with various polymer donors. OSCs based on P3HT:BTDT2R, PPDT2FBT:BTDT2R, and PTB7-Th:BTDT2R achieved efficiency as high as 5.09, 6.90, and 8.19%, respectively. Importantly, photoactive films incorporating different forms of optical and molecular ordering characteristics exhibit favorable morphologies by means of solvent vapor annealing. This work suggests that the new n-type organic semiconductor developed here is highly promising as a universal NFA that can be paired with various polymer donors with different optical and crystalline properties.

15.
ACS Appl Mater Interfaces ; 11(18): 16785-16794, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30999747

RESUMO

Solution-processed organic solar cells (OSCs) and hybrid perovskite solar cells (PvSCs) generally require appropriate transparent electrode with a low work function, which improves the electron extraction, increases the built-in potential, and suppresses charge recombinations. Hence, interfacial modifiers between the cathode and the photoactive layer play a significant role in OSCs and PvSCs, as they provide suitable energy-level alignment, leading to desirable charge carrier selectivity and suppressing charge carrier recombinations at the interfaces. Here, we present a comprehensive study of the energy-level mapping between a transparent electrode and photoactive layers to enhance the electron-transport ability by introducing amine-based interfacial modifiers (ABIMs). Among the ABIMs, polyethylenimine ethoxylated (PEIE) incorporating inverted OSCs shows enhanced power conversion efficiencies (PCEs) from 0.32 to 9.83% due to large interfacial dipole moments, leading to a well-aligned energy level between the cathode and the photoactive layer. Furthermore, we explore the versatility of the PEIE ABIM by employing different photoactive layers with fullerene derivatives, a nonfullerene acceptor, and a perovskite layer. Promisingly, inverted nonfullerene OSCs and planar n-i-p PvSCs with PEIE ABIM show outstanding PCEs of 11.88 and 17.15%, respectively.

16.
ACS Appl Mater Interfaces ; 9(41): 35871-35879, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28948770

RESUMO

The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH3NH3I; MAI), formamidinium iodide (CH(NH2)2I; FAI), and cesium iodide (CsI)) in CH3NH3PbI3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH3NH3PbI3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm2).

17.
Sci Rep ; 6: 22604, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26932767

RESUMO

Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices.

18.
ACS Appl Mater Interfaces ; 8(20): 12940-50, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27156705

RESUMO

A series of small compound materials based on benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) with three different alkyl side chains were synthesized and used for organic photovoltaics. These small compounds had different alkyl branches (i.e., 2-ethylhexyl (EH), 2-butyloctyl (BO), and 2-hexyldecyl (HD)) attached to DPP units. Thin films made of these compounds were characterized and their solar cell parameters were measured in order to systematically analyze influences of the different side chains of compounds on the film microstructure, molecular packing, and hence, charge-transport and recombination properties. The relatively shorter side chains in the small molecules enabled more ordered packing structures with higher crystallinities, which resulted in higher carrier mobilities and less recombination factors; the small molecule with the EH branches exhibited the best semiconducting properties with a power conversion efficiency of up to 5.54% in solar cell devices. Our study suggested that tuning the alkyl chain length of semiconducting molecules is a powerful strategy for achieving high performance of organic photovoltaics.

19.
Chem Commun (Camb) ; 50(60): 8235-8, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24934612

RESUMO

The solution-processable small molecules based on carbazole or fluorene containing rhodanine dyes at both ends were synthesized and introduced as acceptors in organic photovoltaic cells. The high energy levels of their lowest unoccupied molecular orbitals resulted in a power conversion efficiency of 3.08% and an open circuit voltage of up to 1.03 V.

20.
J Nanosci Nanotechnol ; 14(8): 6060-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936057

RESUMO

New dithieno[3,2-b:2',3'-d]thiophene (DTT)-based copolymers were designed and synthesized for use as donor materials in polymer solar cells (PSCs). The optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results indicate that the acceptor units in the copolymers influenced the band gap, electronic energy levels, and photovoltaic properties of the copolymers significantly. The band gaps of the copolymers were in the range 1.85-2.02 eV. Under optimized conditions, the DTT-based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range 0.97-1.19% under AM 1.5 illumination (100 mW/cm2). Among the copolymers, P2, which contained a pyrrolo[3,4-f]isoindole-tetraone acceptor unit, showed a power conversion efficiency of 1.19% with a short circuit current of 4.18 mA/cm2, open circuit voltage of 0.77 V, and a fill factor of 0.37, under AM 1.5 illumination (100 mW/cm2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA