Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2218049120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307471

RESUMO

Environmental hypoxia challenges female reproductive physiology in placental mammals, increasing rates of gestational complications. Adaptation to high elevation has limited many of these effects in humans and other mammals, offering potential insight into the developmental processes that lead to and protect against hypoxia-related gestational complications. However, our understanding of these adaptations has been hampered by a lack of experimental work linking the functional, regulatory, and genetic underpinnings of gestational development in locally adapted populations. Here, we dissect high-elevation adaptation in the reproductive physiology of deer mice (Peromyscus maniculatus), a rodent species with an exceptionally broad elevational distribution that has emerged as a model for hypoxia adaptation. Using experimental acclimations, we show that lowland mice experience pronounced fetal growth restriction when challenged with gestational hypoxia, while highland mice maintain normal growth by expanding the compartment of the placenta that facilitates nutrient and gas exchange between gestational parent and fetus. We then use compartment-specific transcriptome analyses to show that adaptive structural remodeling of the placenta is coincident with widespread changes in gene expression within this same compartment. Genes associated with fetal growth in deer mice significantly overlap with genes involved in human placental development, pointing to conserved or convergent pathways underlying these processes. Finally, we overlay our results with genetic data from natural populations to identify candidate genes and genomic features that contribute to these placental adaptations. Collectively, these experiments advance our understanding of adaptation to hypoxic environments by revealing physiological and genetic mechanisms that shape fetal growth trajectories under maternal hypoxia.


Assuntos
Peromyscus , Placenta , Gravidez , Humanos , Animais , Feminino , Aclimatação , Desenvolvimento Fetal , Hipóxia
2.
Proc Natl Acad Sci U S A ; 119(14): e2118574119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357968

RESUMO

For many vertebrates, a single genetic locus initiates a cascade of developmental sex differences in the gonad and throughout the organism, resulting in adults with two phenotypically distinct sexes. Species with polygenic sex determination (PSD) have multiple interacting sex determination alleles segregating within a single species, allowing for more than two genotypic sexes and scenarios where sex genotype at a given locus can be decoupled from gonadal sex. Here we investigate the effects of PSD on secondary sexual characteristics in the cichlid fish Metriaclima mbenjii, where one female (W) and one male (Y) sex determination allele interact to produce siblings with four possible sex classes: ZZXX females, ZWXX females, ZWXY females, and ZZXY males. We find that PSD in M. mbenjii produces an interplay of sex linkage and sex limitation resulting in modular variation in morphological and behavioral traits. Further, the evolution or introgression of a newly acquired sex determiner creates additional axes of phenotypic variation for varied traits, including genital morphology, craniofacial morphology, gastrointestinal morphology, and home tank behaviors. In contrast to single-locus sex determination, which broadly results in sexual dimorphism, polygenic sex determination can induce higher-order sexual polymorphism. The modularity of secondary sexual characteristics produced by PSD provides context for understanding the evolutionary causes and consequences of maintenance, gain, or loss of sex determination alleles in populations.


Assuntos
Ciclídeos , Processos de Determinação Sexual , Animais , Ciclídeos/genética , Ciclídeos/fisiologia , Feminino , Aptidão Genética , Masculino , Fenótipo , Polimorfismo Genético , Caracteres Sexuais , Cromossomos Sexuais/genética
3.
Mol Ecol ; : e17303, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411307

RESUMO

Gene expression has a key role in reproductive isolation, and studies of hybrid gene expression have identified mechanisms causing hybrid sterility. Here, we review the evidence for altered gene expression following hybridization and outline the mechanisms shown to contribute to altered gene expression in hybrids. Transgressive gene expression, transcending that of both parental species, is pervasive in early generation sterile hybrids, but also frequently observed in viable, fertile hybrids. We highlight studies showing that hybridization can result in transgressive gene expression, also in established hybrid lineages or species. Such extreme patterns of gene expression in stabilized hybrid taxa suggest that altered hybrid gene expression may result in hybridization-derived evolutionary novelty. We also conclude that while patterns of misexpression in hybrids are well documented, the understanding of the mechanisms causing misexpression is lagging. We argue that jointly assessing differences in cell composition and cell-specific changes in gene expression in hybrids, in addition to assessing changes in chromatin and methylation, will significantly advance our understanding of the basis of altered gene expression. Moreover, uncovering to what extent evolution of gene expression results in altered expression for individual genes, or entire networks of genes, will advance our understanding of how selection moulds gene expression. Finally, we argue that jointly studying the dual roles of altered hybrid gene expression, serving both as a mechanism for reproductive isolation and as a substrate for hybrid ecological adaptation, will lead to significant advances in our understanding of the evolution of gene expression.

4.
Mol Ecol ; 32(14): 3975-3988, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161914

RESUMO

Divergence in body shape is one of the most widespread and repeated patterns of morphological variation in fishes and is associated with habitat specification and swimming mechanics. Such ecological diversification is the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclima sp. × Aulonocara sp. and Labidochromis sp. × Labeotropheus sp., >975 animals total) to determine the genetic basis of body shape diversification that is similar to benthic-pelagic divergence across fishes. Using a series of both linear and geometric shape measurements, we identified 34 quantitative trait loci (QTL) that underlie various aspects of body shape variation. These QTL are spread throughout the genome, each explaining 3.2-8.6% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effect. In all, we find that convergent body shape phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.


Assuntos
Ciclídeos , Somatotipos , Animais , Locos de Características Quantitativas/genética , Ecossistema , Fenótipo , Lagos
5.
Mol Ecol ; 26(10): 2625-2639, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28027432

RESUMO

Despite long-standing interest in the evolution and maintenance of discrete phenotypic polymorphisms, the molecular genetic basis of such polymorphism in the wild is largely unknown. Female sex-associated blotched colour polymorphisms found in cichlids of Lake Malawi, East Africa, represent a highly successful polymorphic phenotype, found and maintained in four genera across the geographic expanse of the lake. Previously, we identified an association with an allelic variant of the paired-box transcription factor gene pax7a and blotched colour morphs in Lake Malawi cichlid fishes. Although a diverse range of blotched phenotypes are present in Lake Malawi cichlid species, they all appeared to result from an allele of pax7a that produces increased levels of transcript. Here, we examine the developmental and genetic basis of variation among blotched morphs. First, we confirm that pax7a-associated blotch morphs result primarily from modulation of melanophore development and survival. From laboratory crosses and natural population studies, we identify at least three alleles of pax7a associated with discrete subtypes of blotched morphs, in addition to the ancestral pax7a allele. Genotypes at pax7a support initial evolution of a novel pax7a allele to produce the blotched class of morphs, followed by subsequent evolution of that pax7a blotched allele to produce additional alleles associated with discrete colour morphs. Variant alleles of pax7a produce different levels of pax7a transcript, correlating with pigmentation phenotype at the cellular level. This naturally selected allelic series should serve as a case study for understanding the molecular genetic control of pax7a expression and the evolution of sex-associated alleles.


Assuntos
Ciclídeos/genética , Proteínas de Peixes/genética , Fator de Transcrição PAX2/genética , Pigmentação/genética , África Oriental , Alelos , Animais , Cor , Feminino , Lagos , Fenótipo
6.
Naturwissenschaften ; 104(5-6): 41, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28444435

RESUMO

East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.


Assuntos
Ciclídeos/fisiologia , Processos de Determinação Sexual/genética , Distribuição Animal , Animais , Ciclídeos/classificação , Ciclídeos/genética , Feminino , Marcadores Genéticos/genética , Masculino , Cromossomos Sexuais/genética , Especificidade da Espécie
7.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662315

RESUMO

The mammalian placenta is a hotspot for the evolution of genomic imprinting, a form of gene regulation that involves the parent-specific epigenetic silencing of one allele. Imprinted genes are central to placental development and are thought to contribute to the evolution of reproductive barriers between species. However, it is unclear how rapidly imprinting evolves or how functional specialization among placental tissues influences the evolution of imprinted expression. We compared parent-of-origin expression bias across functionally distinct placental layers sampled from reciprocal crosses within three closely related lineages of mice ( Mus ). Using genome-wide gene expression and DNA methylation data from fetal and maternal tissues, we developed an analytical strategy to minimize pervasive bias introduced by maternal contamination of placenta samples. We corroborated imprinted expression at 42 known imprinted genes and identified five candidate imprinted genes showing parent-of-origin specific expression and DNA methylation. Paternally-biased expression was enriched in the labyrinth zone, a layer specialized in nutrient transfer, and maternally-biased genes were enriched in the junctional zone, which specializes in modulation of maternal physiology. Differentially methylated regions were predominantly determined through epigenetic modification of the maternal genome and were associated with both maternally- and paternally-biased gene expression. Lastly, comparisons between lineages revealed a small set of co-regulated genes showing rapid divergence in expression levels and imprinted status in the M. m. domesticus lineage. Together, our results reveal important links between core functional elements of placental biology and the evolution of imprinted gene expression among closely related rodent species.

8.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961317

RESUMO

Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic regulatory phenotypes in hybrids including the propensity towards over or underexpression relative to parental species, the influence of developmental stage on the extent of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex-chromosome specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple histological blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid regulatory phenotypes of house mice and dwarf hamsters, there are also clear differences that point towards unique mechanisms underlying hybrid male sterility in each system. Our results highlight the potential of comparative approaches in helping to understand the importance of disrupted gene regulation in speciation.

9.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461734

RESUMO

Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. In order to understand genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.

10.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37097016

RESUMO

Cellular senescence is a program of cell cycle arrest, apoptosis resistance, and cytokine release induced by stress exposure in metazoan cells. Landmark studies in laboratory mice have characterized a number of master senescence regulators, including p16INK4a, p21, NF-κB, p53, and C/EBPß. To discover other molecular players in senescence, we developed a screening approach to harness the evolutionary divergence between mouse species. We found that primary cells from the Mediterranean mouse Mus spretus, when treated with DNA damage to induce senescence, produced less cytokine and had less-active lysosomes than cells from laboratory Mus musculus. We used allele-specific expression profiling to catalog senescence-dependent cis-regulatory variation between the species at thousands of genes. We then tested for correlation between these expression changes and interspecies sequence variants in the binding sites of transcription factors. Among the emergent candidate senescence regulators, we chose a little-studied cell cycle factor, upstream stimulatory factor 2 (USF2), for molecular validation. In acute irradiation experiments, cells lacking USF2 had compromised DNA damage repair and response. Longer-term senescent cultures without USF2 mounted an exaggerated senescence regulatory program-shutting down cell cycle and DNA repair pathways, and turning up cytokine expression, more avidly than wild-type. We interpret these findings under a model of pro-repair, anti-senescence regulatory function by USF2. Our study affords new insights into the mechanisms by which cells commit to senescence, and serves as a validated proof of concept for natural variation-based regulator screens.


Assuntos
Senescência Celular , Dano ao DNA , Animais , Camundongos , Ciclo Celular , Senescência Celular/genética , Citocinas/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores Estimuladores Upstream/genética
11.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642315

RESUMO

The X chromosome of therian mammals shows strong conservation among distantly related species, limiting insights into the distinct selective processes that have shaped sex chromosome evolution. We constructed a chromosome-scale de novo genome assembly for the Siberian dwarf hamster (Phodopus sungorus), a species reported to show extensive recombination suppression across an entire arm of the X chromosome. Combining a physical genome assembly based on shotgun and long-range proximity ligation sequencing with a dense genetic map, we detected widespread suppression of female recombination across ∼65% of the Phodopus X chromosome. This region of suppressed recombination likely corresponds to the Xp arm, which has previously been shown to be highly heterochromatic. Using additional sequencing data from two closely related species (P. campbelli and P. roborovskii), we show that recombination suppression on Xp appears to be independent of major structural rearrangements. The suppressed Xp arm was enriched for several transposable element families and de-enriched for genes primarily expressed in placenta, but otherwise showed similar gene densities, expression patterns, and rates of molecular evolution when compared to the recombinant Xq arm. Phodopus Xp gene content and order was also broadly conserved relative to the more distantly related rat X chromosome. These data suggest that widespread suppression of recombination has likely evolved through the transient induction of facultative heterochromatin on the Phodopus Xp arm without major changes in chromosome structure or genetic content. Thus, substantial changes in the recombination landscape have so far had relatively subtle influences on patterns of X-linked molecular evolution in these species.


Assuntos
Phodopus , Cromossomo X , Animais , Cricetinae , Evolução Molecular , Feminino , Phodopus/genética , Gravidez , Ratos , Recombinação Genética , Cromossomo X/genética
12.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33710276

RESUMO

Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.


Assuntos
Genes Ligados ao Cromossomo X/genética , Placenta/metabolismo , Cromossomo X/genética , Animais , Cricetinae/genética , Feminino , Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Impressão Genômica , Placenta/embriologia , Gravidez , Isolamento Reprodutivo , Especificidade da Espécie
13.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942871

RESUMO

BACKGROUND: African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages. RESULTS: We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (∼2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage. CONCLUSION: This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation.


Assuntos
Ciclídeos/genética , Evolução Molecular , Genoma , Genômica , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Diploide , Ligação Genética , Genômica/métodos , Cariótipo , Anotação de Sequência Molecular , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA