Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Monit Assess ; 195(1): 175, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469181

RESUMO

Seasonal changes of trace elements, nutrients, dissolved organic matter (DOM), and carbonate system parameters were evaluated over the largest deteriorating oyster reef in the Western Mississippi Sound using data collected during spring, summer, and winter of 2018, and summer of 2019. Higher concentrations of Pb (224%), Cu (211%), Zn (2400%), and Ca (240%) were observed during winter of 2018 compared to summer 2019. Phosphate and ammonia concentrations were higher (> 800%) during both summers of 2018 and 2019 than winter of 2018. Among the three distinct DOM components identified, two terrestrial humic-like components were more abundant during both spring (12% and 36%) and summer (11% and 33%) of 2018 than winter of 2018, implying a relatively lesser supply of humic-like components from terrestrial sources during winter. On the other hand, the protein-like component was more abundant during summer of 2019 compared to rest of the study period, suggesting a higher rate of autochthonous production during summer 2019. In addition, to their significant depth-wise variation, ocean acidification parameters including pH, pCO2, CO32-, and carbonate saturation states were all higher during both summers of 2018 and 2019. The measured variables such as trace elements, organic carbon, suspended particulates, and acidification parameters exhibited conservative mixing behavior against salinity. These observations have strong implications for the health of the oyster reefs, which provides ecologically important habitats and supports the economy of the Gulf Coast.


Assuntos
Ostreidae , Oligoelementos , Animais , Oligoelementos/análise , Rios , Matéria Orgânica Dissolvida , Estações do Ano , Concentração de Íons de Hidrogênio , Mississippi , Monitoramento Ambiental , Água do Mar
2.
IEEE Trans Vis Comput Graph ; 16(6): 1421-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975183

RESUMO

Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single mid-troposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.

3.
IEEE Trans Vis Comput Graph ; 15(6): 1209-18, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834191

RESUMO

Many techniques have been proposed to show uncertainty in data visualizations. However, very little is known about their effectiveness in conveying meaningful information. In this paper, we present a user study that evaluates the perception of uncertainty amongst four of the most commonly used techniques for visualizing uncertainty in one-dimensional and two-dimensional data. The techniques evaluated are traditional errorbars, scaled size of glyphs, color-mapping on glyphs, and color-mapping of uncertainty on the data surface. The study uses generated data that was designed to represent the systematic and random uncertainty components. Twenty-seven users performed two types of search tasks and two types of counting tasks on 1D and 2D datasets. The search tasks involved finding data points that were least or most uncertain. The counting tasks involved counting data features or uncertainty features. A 4x4 full-factorial ANOVA indicated a significant interaction between the techniques used and the type of tasks assigned for both datasets indicating that differences in performance between the four techniques depended on the type of task performed. Several one-way ANOVAs were computed to explore the simple main effects. Bonferronni's correction was used to control for the family-wise error rate for alpha-inflation. Although we did not find a consistent order among the four techniques for all the tasks, there are several findings from the study that we think are useful for uncertainty visualization design. We found a significant difference in user performance between searching for locations of high and searching for locations of low uncertainty. Errorbars consistently underperformed throughout the experiment. Scaling the size of glyphs and color-mapping of the surface performed reasonably well. The efficiency of most of these techniques were highly dependent on the tasks performed. We believe that these findings can be used in future uncertainty visualization design. In addition, the framework developed in this user study presents a structured approach to evaluate uncertainty visualization techniques, as well as provides a basis for future research in uncertainty visualization.

4.
Environ Sci Pollut Res Int ; 24(16): 14124-14141, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417327

RESUMO

Water quality of lakes, estuaries, and coastal areas serves as an indicator of the overall health of aquatic ecosystems as well as the health of the terrestrial ecosystem that drains to the water body. Land use and land cover plays not only a significant role in controlling the quantity of the exported dissolved organic matter (DOM) but also influences the quality of DOM via various biogeochemical and biodegradation processes. We examined the characteristics and spatial distribution of DOM in five major lakes, in an estuary, and in the coastal waters of the Mississippi, USA, and investigated the influence of the land use and land cover of their watersheds on the DOM composition. We employed absorption and fluorescence spectroscopy including excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis modeling techniques to determine optical properties of DOM and its characteristics in this study. We developed a site-specific PARAFAC model to evaluate DOM characteristics resulting in five diverse DOM compositions that included two terrestrial humic-like (C1 and C3), two microbial humic-like (C2 and C5), and one protein-like (C4) DOM. Our results showed elevated fluorescence levels of microbial humic-like or protein-like DOM in the lakes and coastal waters, while the estuarine waters showed relatively high fluorescence levels of terrestrial humic-like DOM. The results also showed that percent forest and wetland coverage explained 68 and 82% variability, respectively, in terrestrial humic-like DOM exports, while 87% variability in microbially derived humiclike DOM was explained by percent agricultural lands. Strong correlations between microbial humic-like DOM and fluorescence-derived DOM indices such as biological index (BIX) and fluorescence index (FI) indicated autochthonous characteristics in the lakes, while the estuary showed largely allochthonous DOM of terrestrial origin. We also observed higher concentrations of total dissolved phosphorous (TDP) and ammonium nitrogen (NH4-N) in coastal waters potentially due to photodegradation of refractory DOM derived from the sediment-bound organic matter in the coastal wetlands. This study highlights the relationships between the DOM compositions in the water and the land use and land cover in the watershed. The spatial variability of DOM in three different types of aquatic environments enhances the understanding of the role of land use and land cover in carbon cycling through export of organic matter to the aquatic ecosystems..


Assuntos
Estuários , Compostos Orgânicos , Fósforo , Qualidade da Água , Lagos , Rios , Espectrometria de Fluorescência
5.
IEEE Trans Vis Comput Graph ; 12(5): 965-72, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17080823

RESUMO

This paper presents an advanced evenly-spaced streamline placement algorithm for fast, high-quality, and robust layout of flow lines. A fourth-order Runge-Kutta integrator with adaptive step size and error control is employed for rapid accurate streamline advection. Cubic Hermite polynomial interpolation with large sample-spacing is adopted to create fewer evenly-spaced samples along each streamline to reduce the amount of distance checking. We propose two methods to enhance placement quality. Double queues are used to prioritize topological seeding and to favor long streamlines to minimize discontinuities. Adaptive distance control based on the local flow variance is explored to reduce cavities. Furthermore, we propose a universal, effective, fast, and robust loop detection strategy to address closed and spiraling streamlines. Our algorithm is an order-of-magnitude faster than Jobard and Lefer's algorithm with better placement quality and over 5 times faster than Mebarki et al.'s algorithm with comparable placement quality, but with a more robust solution to loop detection.

6.
IEEE Trans Vis Comput Graph ; 11(2): 113-25, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15747635

RESUMO

Unsteady flow line integral convolution (UFLIC) is a texture synthesis technique for visualizing unsteady flows with high temporal-spatial coherence. Unfortunately, UFLIC requires considerable time to generate each frame due to the huge amount of pathline integration that is computed for particle value scattering. This paper presents Accelerated UFLIC (AUFLIC) for near interactive (1 frame/second) visualization with 160,000 particles per frame. AUFLIC reuses pathlines in the value scattering process to reduce computationally expensive pathline integration. A flow-driven seeding strategy is employed to distribute seeds such that only a few of them need pathline integration while most seeds are placed along the pathlines advected at earlier times by other seeds upstream and, therefore, the known pathlines can be reused for fast value scattering. To maintain a dense scattering coverage to convey high temporal-spatial coherence while keeping the expense of pathline integration low, a dynamic seeding controller is designed to decide whether to advect, copy, or reuse a pathline. At a negligible memory cost, AUFLIC is 9 times faster than UFLIC with comparable image quality.


Assuntos
Aceleração , Algoritmos , Gráficos por Computador , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Reologia/métodos , Interface Usuário-Computador , Simulação por Computador , Dinâmica não Linear , Análise Numérica Assistida por Computador , Análise de Regressão
7.
IEEE Trans Vis Comput Graph ; 18(5): 783-96, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21690646

RESUMO

This paper presents a 2D flow visualization user study that we conducted using new methodologies to increase the objectiveness. We evaluated grid-based variable-size arrows, evenly spaced streamlines, and line integral convolution (LIC) variants (basic, oriented, and enhanced versions) coupled with a colorwheel and/or rainbow color map, which are representative of many geometry-based and texture-based techniques. To reduce data-related bias, template-based explicit flow synthesis was used to create a wide variety of symmetric flows with similar topological complexity. To suppress task-related bias, pattern-based implicit task design was employed, addressing critical point recognition, critical point classification, and symmetric pattern categorization. In addition, variable-duration and fixed-duration measurement schemes were utilized for lightweight precision-critical and heavyweight judgment intensive flow analysis tasks, respectively, to record visualization effectiveness. We eliminated outliers and used the Ryan REGWQ post-hoc homogeneous subset tests in statistical analysis to obtain reliable findings. Our study shows that a texture-based dense representation with accentuated flow streaks, such as enhanced LIC, enables intuitive perception of the flow, while a geometry-based integral representation with uniform density control, such as evenly spaced streamlines, may exploit visual interpolation to facilitate mental reconstruction of the flow. It is also shown that inappropriate color mapping (e.g., colorwheel) may add distractions to a flow representation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA