Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352003

RESUMO

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Acetaminofen , Animais , Tetracloreto de Carbono , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Reparo do DNA , Replicação do DNA , Células Estreladas do Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Serina , Transdução de Sinais
2.
Mol Ther ; 25(1): 218-231, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129116

RESUMO

The progression of fibrosis in chronic liver disease is dependent upon hepatic stellate cells (HSCs) transdifferentiating to a myofibroblast-like phenotype. This pivotal process is controlled by enzymes that regulate histone methylation and chromatin structure, which may be targets for developing anti-fibrotics. There is limited pre-clinical experimental support for the potential to therapeutically manipulate epigenetic regulators in fibrosis. In order to learn if epigenetic treatment can halt the progression of pre-established liver fibrosis, we treated mice with the histone methyltransferase inhibitor 3-deazaneplanocin A (DZNep) in a naked form or by selectively targeting HSC-derived myofibroblasts via an antibody-liposome-DZNep targeting vehicle. We discovered that DZNep treatment inhibited multiple histone methylation modifications, indicative of a broader specificity than previously reported. This broad epigenetic repression was associated with the suppression of fibrosis progression as assessed both histologically and biochemically. The anti-fibrotic effect of DZNep was reproduced when the drug was selectively targeted to HSC-derived myofibroblasts. Therefore, the in vivo modulation of HSC histone methylation is sufficient to halt progression of fibrosis in the context of continuous liver damage. This discovery and our novel HSC-targeting vehicle, which avoids the unwanted effects of epigenetic drugs on parenchymal liver cells, represents an important proof-of-concept for epigenetic treatment of liver fibrosis.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Animais , Biomarcadores , Tetracloreto de Carbono/efeitos adversos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Masculino , Camundongos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo
3.
J Hepatol ; 64(3): 661-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26632634

RESUMO

BACKGROUND & AIMS: DNA methylation (5-mC) is an epigenetic mark that is an established regulator of transcriptional repression with an important role in liver fibrosis. Currently, there is very little knowledge available as to how DNA methylation controls the phenotype of hepatic stellate cell (HSC), the key cell type responsible for onset and progression of liver fibrosis. Moreover, recently discovered DNA hydroxymethylation (5-hmC) is involved in transcriptional activation and its patterns are often altered in human diseases. The aim of this study is to investigate the role of DNA methylation/hydroxymethylation in liver fibrosis. METHODS: Levels of 5-mC and 5-hmC were assessed by slot blot in a range of animal liver fibrosis models and human liver diseases. Expression levels of TET and DNMT enzymes were measured by qRT-PCR and Western blotting. Reduced representation bisulfite sequencing (RRBS) method was used to examine 5-mC and 5-hmC patterns in quiescent and in vivo activated rat HSC. RESULTS: We demonstrate global alteration in 5-mC and 5-hmC and their regulatory enzymes that accompany liver fibrosis and HSC transdifferentiation. Using RRBS, we show exact genomic positions of changed methylation patterns in quiescent and in vivo activated rat HSC. In addition, we demonstrate that reduction in DNMT3a expression leads to attenuation of pro-fibrogenic phenotype in activated HSC. CONCLUSIONS: Our data suggest that DNA 5-mC/5-hmC is a crucial step in HSC activation and therefore fibrogenesis. Changes in DNA methylation during HSC activation may bring new insights into the molecular events underpinning fibrogenesis and may provide biomarkers for disease progression as well as potential new drug targets.


Assuntos
Transdiferenciação Celular , Metilação de DNA , Células Estreladas do Fígado/citologia , Cirrose Hepática/etiologia , Animais , DNA (Citosina-5-)-Metiltransferases/fisiologia , DNA Metiltransferase 3A , Células Estreladas do Fígado/fisiologia , Humanos , Ratos , Ratos Sprague-Dawley , DNA Metiltransferase 3B
4.
FASEB J ; 28(2): 836-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24249635

RESUMO

Insulin resistance and nonalcoholic steatohepatitis (NASH), characterized by hepatic steatosis combined with inflammation, are major sequelae of obesity. Currently, lifestyle modification (i.e., weight loss) is the first-line therapy for NASH. However, weight loss resolves steatosis but not inflammation. In this study, we tested the ability of resolvin D1 (RvD1), an anti-inflammatory and proresolving molecule, to promote the resolution initiated by calorie restriction in obese mice with NASH. Calorie restriction reduced adipose and liver weight (-56 and -13%, respectively; P<0.001), serum leptin and resistin levels, hepatic steatosis, and insulin resistance. In addition to these, mice receiving RvD1 during the dietary intervention showed increased adiponectin expression at both the mRNA and protein levels and reduced liver macrophage infiltration (-15%, P<0.01). Moreover, RvD1 skewed macrophages from an M1- to an M2-like anti-inflammatory phenotype, induced a specific hepatic miRNA signature (i.e., miR-219-5p and miR-199a-5p), and reduced inflammatory adipokine mRNA and protein expression and macrophage innate immune response. In precision-cut liver slices (PCLSs), which override the influence of circulating factors, RvD1 attenuated hypoxia-induced mRNA and protein expression of COX-2, IL-1ß, IL-6, and CCR7. Of note, RvD1 anti-inflammatory actions were absent in macrophage-depleted PCLSs. In summary, RvD1 acts as a facilitator of the hepatic resolution process by reducing the inflammatory component of obesity-induced NASH.


Assuntos
Restrição Calórica , Ácidos Docosa-Hexaenoicos/metabolismo , Fígado Gorduroso/dietoterapia , Fígado Gorduroso/metabolismo , Obesidade/complicações , Animais , Western Blotting , Ácidos Docosa-Hexaenoicos/genética , Fígado Gorduroso/etiologia , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
5.
Gut ; 63(2): 344-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23492103

RESUMO

OBJECTIVE: The mechanisms underlying non-alcoholic steatohepatitis (NASH) are not completely elucidated. In the current study we integrated gene expression profiling of liver biopsies from NASH patients with translational studies in mouse models of steatohepatitis and pharmacological interventions in isolated hepatocytes to identify new molecular targets in NASH. DESIGN AND RESULTS: Using oligonucleotide microarray analysis we identified a significant enrichment of genes involved in the multi-step catalysis of long-chain polyunsaturated fatty acids, namely, Δ-5 desaturase (Δ5D) and Δ6D in NASH. Increased expression of Δ5D and Δ6D at both mRNA and protein level were confirmed in livers from mice with high-fat diet-induced obesity and NASH. Gas chromatography analysis revealed impaired desaturation fluxes toward the ω-6 and ω-3 pathways resulting in increased ω-6 to ω-3 ratio and reduced ω-3 index in human and mouse fatty livers. Restoration of hepatic ω-3 content in transgenic fat-1 mice expressing an ω-3 desaturase, which allows the endogenous conversion of ω-6 into ω-3 fatty acids, produced a significant reduction in hepatic insulin resistance, steatosis, macrophage infiltration, necroinflammation and lipid peroxidation, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were mostly reproduced by feeding obese mice with an exogenous ω-3-enriched diet. A combined Δ5D/Δ6D inhibitor, CP-24879, significantly reduced intracellular lipid accumulation and inflammatory injury in hepatocytes. Interestingly, CP-24879 exhibited superior antisteatotic and anti-inflammatory actions in fat-1 and ω-3-treated hepatocytes. CONCLUSIONS: These findings indicate that impaired hepatic fatty acid desaturation and unbalanced ω-6 to ω-3 ratio play a role in the pathogenesis of NASH.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Linoleoil-CoA Desaturase/metabolismo , Fígado/patologia , Animais , Cromatografia Gasosa , Dessaturase de Ácido Graxo Delta-5 , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
6.
J Biol Chem ; 288(39): 28230-42, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23943621

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling the process of pre-adipocyte differentiation in white adipose tissue (WAT). Adipocyte-specific PPARγ knock-out mice carrying an aP2 promoter-driven Cre recombinase transgene showed a blunted response to the adipogenic effects of a high fat diet. Pre-adipocytes from these knock-out mice showed loss of PPARγ and were resistant to rosiglitazone-induced WAT differentiation. In parallel, WAT from these mice showed increased expression of uncoupling protein 1, a mitochondrial enzyme that dissipates chemical energy as heat. Adipose tissue from mice lacking PPARγ also showed mPGES-1 up-regulation and increased PGE2 levels. In turn, PGE2 suppressed PPARγ expression and blocked rosiglitazone-induced pre-adipocyte differentiation toward white adipocytes while directly elevating uncoupling protein 1 expression and pre-adipocyte differentiation into mature beige/brite adipocytes. Consistently, pharmacological mPGES-1 inhibition directed pre-adipocyte differentiation toward white adipocytes while suppressing differentiation into beige/brite adipocytes. This browning effect was reproduced in knockdown experiments using a siRNA directed against mPGES-1. The effects of PGE2 on pre-adipocyte differentiation were not seen in mice lacking PPARγ in adipose tissue and were not mirrored by other eicosanoids (i.e. leukotriene B4). Taken together, these findings identify PGE2 as a key regulator of white-to-brown adipogenesis and suggest the existence of a coordinate regulation of adipogenesis between PPARγ and mPGES-1.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Regulação Enzimológica da Expressão Gênica , Oxirredutases Intramoleculares/metabolismo , Microssomos/enzimologia , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipogenia , Tecido Adiposo/enzimologia , Animais , Diferenciação Celular , Eicosanoides/metabolismo , Feminino , Homeostase , Inflamação/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Prostaglandina-E Sintases , Prostaglandinas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo
7.
J Hepatol ; 59(5): 1045-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23831119

RESUMO

BACKGROUND & AIMS: PPARγ plays an essential role in the transcriptional regulation of genes involved in lipid and glucose metabolism, insulin sensitivity, and inflammation. We recently demonstrated that PPARγ plays a causative role in hepatocyte lipid deposition, contributing to the pathogenesis of hepatic steatosis. In this study, we investigated the role of PPARγ in the inflammatory and fibrogenic response of the liver. METHODS: Heterozygous floxed/null Cre/LoxP mice with targeted deletion of PPARγ in either hepatocytes (Alb-Cre), macrophages (LysM-Cre) or hepatic stellate cells (HSCs) (aP2-Cre) were submitted to carbon tetrachloride (CCl4) liver injury. Further analyses were performed in precision-cut liver slices (PCLS) and primary cultures of hepatocytes, macrophages, and HSCs. RESULTS: LysM-Cre mice displayed an exacerbated response to chronic CCl4 injury and showed higher necroinflammatory injury, lipid peroxidation, inflammatory infiltrate, cleaved-caspase-3 and caspase 3/7 activity, and COX-2, TNF-α, CXCL2, and IL-1ß expression than Alb-Cre and control mice. The deleterious effects of PPARγ disruption in liver macrophages were confirmed in an acute model of CCl4 injury as well as in PCLS incubated with LPS. Moreover, LysM-Cre mice showed an aggravated fibrogenic response to CCl4, as revealed by more prominent Sirius Red and Masson's trichrome staining, elevated hydroxyproline content and induced α-SMA and TIMP-1 expression. Importantly, aP2-Cre mice with specific disruption of PPARγ in HSCs, as confirmed by immunocytochemical analysis of individual liver cells, also showed exacerbated liver damage and fibrogenic response to CCl4. CONCLUSIONS: These data unveil anti-inflammatory and anti-fibrogenic roles for PPARγ in non-parenchymal liver cells.


Assuntos
Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Inflamação/fisiopatologia , Cirrose Hepática/fisiopatologia , Macrófagos/patologia , PPAR gama/deficiência , PPAR gama/fisiologia , Actinas/metabolismo , Animais , Tetracloreto de Carbono/efeitos adversos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , PPAR gama/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo
8.
J Immunol ; 187(10): 5408-18, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013115

RESUMO

We recently demonstrated that ω-3-polyunsaturated fatty acids ameliorate obesity-induced adipose tissue inflammation and insulin resistance. In this study, we report novel mechanisms underlying ω-3-polyunsaturated fatty acid actions on adipose tissue, adipocytes, and stromal vascular cells (SVC). Inflamed adipose tissue from high-fat diet-induced obese mice showed increased F4/80 and CD11b double-positive macrophage staining and elevated IL-6 and MCP-1 levels. Docosahexaenoic acid (DHA; 4 µg/g) did not change the total number of macrophages but significantly reduced the percentage of high CD11b/high F4/80-expressing cells in parallel with the emergence of low-expressing CD11b/F4/80 macrophages in the adipose tissue. This effect was associated with downregulation of proinflammatory adipokines in parallel with increased expression of IL-10, CD206, arginase 1, resistin-like molecule α, and chitinase-3 like protein, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. This shift was confined to the SVC fraction, in which secretion of Th1 cytokines (IL-6, MCP-1, and TNF-α) was blocked by DHA. Notably, resolvin D1, an anti-inflammatory and proresolving mediator biosynthesized from DHA, markedly attenuated IFN-γ/LPS-induced Th1 cytokines while upregulating arginase 1 expression in a concentration-dependent manner. Resolvin D1 also stimulated nonphlogistic phagocytosis in adipose SVC macrophages by increasing both the number of macrophages containing ingested particles and the number of phagocytosed particles and by reducing macrophage reactive oxygen species production. No changes in adipocyte area and the phosphorylation of hormone-sensitive lipase, a rate-limiting enzyme regulating adipocyte lipolysis, were observed. These findings illustrate novel mechanisms through which resolvin D1 and its precursor DHA confer anti-inflammatory and proresolving actions in inflamed adipose tissue.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Polaridade Celular/imunologia , Ácidos Docosa-Hexaenoicos/fisiologia , Mediadores da Inflamação/fisiologia , Macrófagos/imunologia , Macrófagos/patologia , Animais , Modelos Animais de Doenças , Imunofenotipagem , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Distribuição Aleatória , Transdução de Sinais/imunologia
9.
FASEB J ; 25(8): 2538-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21507897

RESUMO

Peroxisome proliferator-activated receptor (PPAR) γ is a nuclear receptor central to glucose and lipid homeostasis. PPARγ role in nonalcoholic fatty liver disease is controversial because PPARγ overexpression is a general property of steatotic livers, but its activation by thiazolidinediones reduces hepatic steatosis. Here, we investigated hepatic PPARγ function by using Cre-loxP technology to generate hepatocyte (PPARγ(Δhep))- and macrophage (PPARγ(Δmac))-specific PPARγ-knockout mice. Targeted deletion of PPARγ in hepatocytes, and to a lesser extent in macrophages, protected mice against high-fat diet-induced hepatic steatosis. Down-regulated expression of genes involved in lipogenesis (SCD1, SREBP-1c, and ACC), lipid transport (CD36/FAT, L-FABP, and MTP), and ß-oxidation (PPARα and ACO) was observed in PPARγ(Δhep) mice. Moreover, PPARγ(Δhep) mice showed improved glucose tolerance and reduced PEPCK expression without changes in Pcx, Fbp1, and G6Pc expression and CREB and JNK phosphorylation. In precision-cut liver slices (PCLSs) and hepatocytes, rosiglitazone either alone or in combination with oleic acid increased triglyceride accumulation, an effect that was blocked by the PPARγ antagonist biphenol A diglycidyl ether (BADGE). PCLSs and hepatocytes from PPARγ(Δhep) mice showed blunted responses to rosiglitazone and oleic acid, whereas the response to these compounds remained intact in PCLSs from PPARγ(Δmac) mice. Collectively, these findings establish PPARγ expression in hepatocytes as a prosteatotic factor in fatty liver disease.


Assuntos
Fígado Gorduroso/etiologia , Fígado Gorduroso/fisiopatologia , Obesidade/complicações , Obesidade/fisiopatologia , PPAR gama/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Gorduras na Dieta/administração & dosagem , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Expressão Gênica , Marcação de Genes , Glucose/metabolismo , Hepatócitos/fisiologia , Células de Kupffer/fisiologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Obesidade/genética , Obesidade/patologia , Especificidade de Órgãos , PPAR gama/deficiência , PPAR gama/genética
10.
J Immunol ; 184(7): 3978-87, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20207999

RESUMO

The presence of the so-called low-grade inflammatory state is recognized as a critical event in adipose tissue dysfunction, leading to altered secretion of adipokines and free fatty acids (FFAs), insulin resistance, and development of hepatic complications associated with obesity. This study was designed to investigate the potential contribution of the proinflammatory 5-lipoxygenase (5-LO) pathway to adipose tissue inflammation and lipid dysfunction in experimental obesity. Constitutive expression of key components of the 5-LO pathway, as well as leukotriene (LT) receptors, was detected in adipose tissue as well as in adipocyte and stromal vascular fractions. Adipose tissue from obese mice, compared with that from lean mice, exhibited increased 5-LO activating protein (FLAP) expression and LTB(4) levels. Incubation of adipose tissue with 5-LO products resulted in NF-kappaB activation and augmented secretion of proinflammatory adipokines such as MCP-1, IL-6, and TNF-alpha. In addition, LTB(4), but not LTD(4), reduced FFA uptake in primary adipocytes, whereas 5-LO inhibition suppressed isoproterenol-induced adipose tissue lipolysis. In mice with dietary obesity, elevated FLAP expression in adipose tissue was paralleled with macrophage infiltration, increased circulating FFA levels, and hepatic steatosis, phenomena that were reversed by FLAP inhibition with Bay-X-1005. Interestingly, FLAP inhibition induced AMP-activated protein kinase phosphorylation in parallel with decreases in hormone-sensitive lipase activity and the expression and secretion of TNF-alpha and IL-6. Similar effects were observed in differentiated 3T3-L1 adipocytes incubated with either Bay-X-1005 or the selective LTB(4) receptor antagonist U-75302. Taken together, these findings indicate that the 5-LO pathway signals the adipose tissue low-grade inflammatory state and steatogenic potential in experimental obesity.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Obesidade/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase , Tecido Adiposo/patologia , Animais , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Modelos Animais de Doenças , Eicosanoides/análise , Eicosanoides/metabolismo , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Fígado Gorduroso , Expressão Gênica , Perfilação da Expressão Gênica , Imuno-Histoquímica , Inflamação/patologia , Inflamação/fisiopatologia , Metabolismo dos Lipídeos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Hepatology ; 52(6): 1980-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20967760

RESUMO

UNLABELLED: We have shown that Alox15, the gene encoding for 12/15-lipoxygenase (12/15-LO), is markedly up-regulated in livers from apolipoprotein E-deficient (ApoE(-/-)) mice, which spontaneously develop nonalcoholic fatty liver disease secondary to hyperlipidemia. In the current study, we used ApoE(-/-) mice with a targeted disruption of the Alox15 gene to assess the role of 12/15-LO in the development and progression of hepatic steatosis and inflammation. Compared with ApoE(-/-) mice, which exhibited extensive hepatic lipid accumulation and exacerbated inflammatory injury, ApoE/12/15-LO double-knockout (ApoE(-/-)/12/15-LO(-/-)) mice showed reduced serum alanine aminotransferase levels; decreased hepatic steatosis, inflammation, and macrophage infiltration; and decreased fatty acid synthase, tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-18, and IL-6 expression. Remarkably, disruption of Alox15 attenuated glucose intolerance and high-fat diet-induced insulin resistance, up-regulated insulin receptor substrate-2, and exerted opposite effects on hepatic c-Jun amino-terminal kinase and adenosine monophosphate-activated protein kinase phosphorylation, known negative and positive regulators of insulin signaling, respectively. In adipose tissue, the absence of Alox15 induced significant reductions in the expression of the proinflammatory and insulin-resistant adipokines MCP-1, TNFα, and resistin while increasing the expression of glucose transporter-4. Interestingly, compared with ApoE(-/-) mice, which exhibited increased hepatic caspase-3 staining, ApoE(-/-)/12/15-LO(-/-) mice showed attenuated hepatocellular injury. Consistent with this finding, hepatocytes isolated from ApoE(-/-) mice were more vulnerable to TNFα-induced programmed cell death, an effect that was not observed in hepatocytes carrying a targeted disruption of the Alox15 gene. CONCLUSION: Collectively, our data suggest a potentially relevant mechanism linking 12/15-LO to the promotion of hepatic steatosis, insulin resistance, and inflammation in experimental liver disease of metabolic origin.


Assuntos
Apolipoproteínas E/deficiência , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Fígado Gorduroso/prevenção & controle , Alanina Transaminase/sangue , Animais , Antígenos de Diferenciação/imunologia , Apoptose , Araquidonato 12-Lipoxigenase/fisiologia , Araquidonato 15-Lipoxigenase/fisiologia , Fígado Gorduroso/genética , Teste de Tolerância a Glucose , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Regulação para Cima
12.
Hepatology ; 51(3): 817-27, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20112424

RESUMO

UNLABELLED: The actual risk factors that drive hepatic inflammation during the transition from steatosis to steatohepatitis are unknown. We recently demonstrated that hyperlipidemia-prone apolipoprotein E-deficient (ApoE(-/-)) mice exhibit hepatic steatosis and increased susceptibility to hepatic inflammation and advanced fibrosis. Because the proinflammatory 5-lipoxygenase (5-LO) pathway was found to be up-regulated in these mice and given that 5-LO deficiency confers cardiovascular protection to ApoE(-/-) mice, we determined the extent to which the absence of 5-LO would alter liver injury in these mice. Compared with ApoE(-/-) mice, which showed expected hepatic steatosis and inflammation, ApoE/5-LO double-deficient (ApoE(-/-)/5-LO(-/-)) mice exhibited reduced hepatic inflammation, macrophage infiltration, tumor necrosis factor alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-18 expression, caspase-3 and nuclear factor-kappaB (NF-kappaB) activities, and serum alanine aminotransferase levels in the absence of changes in hepatic steatosis. The lack of 5-LO produced a remarkable insulin-sensitizing effect in the adipose tissue because peroxisome proliferator-activated receptor gamma, insulin receptor substrate-1, and adiponectin were up-regulated, whereas c-Jun amino-terminal kinase phosphorylation and MCP-1 and IL-6 expression were down-regulated. On the other hand, hepatocytes isolated from ApoE(-/-)/5-LO(-/-) mice were more resistant to TNF-alpha-induced apoptosis. The 5-LO products leukotriene (LT) B(4), LTD(4), and 5-HETE consistently triggered TNF-alpha-induced apoptosis and compromised hepatocyte survival by suppressing NF-kappaB activity in the presence of actinomycin D. Moreover, ApoE(-/-)/5-LO(-/-) mice were protected against sustained high-fat diet (HFD)-induced liver injury and hepatic inflammation, macrophage infiltration and insulin resistance were significantly milder than those of ApoE(-/-) mice. Finally, pharmacological inhibition of 5-LO significantly reduced hepatic inflammatory infiltrate in the HFD and ob/ob models of fatty liver disease. CONCLUSION: These combined data indicate that hyperlipidemic mice lacking 5-LO are protected against hepatic inflammatory injury, suggesting that 5-LO is involved in mounting hepatic inflammation in metabolic disease.


Assuntos
Araquidonato 5-Lipoxigenase/deficiência , Araquidonato 5-Lipoxigenase/fisiologia , Hepatócitos/patologia , Hiperlipidemias/enzimologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Apolipoproteínas E/genética , Hepatite , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Camundongos , Camundongos Knockout
13.
FASEB J ; 23(6): 1946-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19211925

RESUMO

Omega-3-polyunsaturated fatty acids (omega-3-PUFAs) have well-documented protective effects that are attributed not only to eicosanoid inhibition but also to the formation of novel biologically active lipid mediators (i.e., resolvins and protectins). In this study, we examined their effects on ob/ob mice, an obesity model of insulin resistance and fatty liver disease. Dietary intake of omega-3-PUFAs had insulin-sensitizing actions in adipose tissue and liver and improved insulin tolerance in obese mice. Genes involved in insulin sensitivity (PPARgamma), glucose transport (GLUT-2/GLUT-4), and insulin receptor signaling (IRS-1/IRS-2) were up-regulated by omega-3-PUFAs. Moreover, omega-3-PUFAs increased adiponectin, an anti-inflammatory and insulin-sensitizing adipokine, and induced AMPK phosphorylation, a fuel-sensing enzyme and a gatekeeper of the energy balance. Concomitantly, hepatic steatosis was alleviated by omega-3-PUFAs. A lipidomic analysis with liquid chromatography/mass spectrometry/mass spectrometry revealed that omega-3-PUFAs inhibited the formation of omega-6-PUFA-derived eicosanoids, while triggering the formation of omega-3-PUFA-derived resolvins and protectins. Moreover, representative members of these lipid mediators, namely resolvin E1 and protectin D1, mimicked the insulin-sensitizing and antisteatotic effects of omega-3-PUFAs and induced adiponectin expression to a similar extent that of rosiglitazone, a member of the thiazolidinedione family of antidiabetic drugs. Taken together, these findings uncover beneficial actions of omega-3-PUFAs and their bioactive lipid autacoids in preventing obesity-induced insulin resistance and hepatic steatosis.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos Ômega-3 , Fígado Gorduroso/dietoterapia , Fígado Gorduroso/metabolismo , Resistência à Insulina , Obesidade , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta , Gorduras na Dieta/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Fígado Gorduroso/patologia , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/genética , PPAR gama/metabolismo , Resistina/genética , Resistina/metabolismo , Rosiglitazona , Tiazolidinedionas/metabolismo
14.
Gastroenterol Hepatol ; 31(10): 682-92, 2008 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-19174085

RESUMO

The presence of a lesion in the cellular parenchyma is common to a large number of chronic liver diseases, such as viral hepatitides, alcoholic hepatitis, chronic cholestasis and steatohepatitis. Although the pathogenesis may vary according to the etiological agent, a series of mechanisms is common to all. Notable among these mechanisms are Kupffer cell activation and inflammatory cell recruitment, free oxygen radical formation and the development of oxidative stress, cytokine production, mainly TNFa and TGFb, and inflammatory mediator release due to arachidonic acid oxidation through the COX-2 and 5-LO pathways.


Assuntos
Hepatopatias/etiologia , Animais , Citocinas/fisiologia , Humanos , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Células de Kupffer/fisiologia , Lipoxigenase/fisiologia , Hepatopatias/enzimologia , Hepatopatias/imunologia , Prostaglandina-Endoperóxido Sintases/fisiologia
15.
Cell Mol Gastroenterol Hepatol ; 4(1): 125-134, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593184

RESUMO

Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.

16.
Front Immunol ; 3: 257, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934096

RESUMO

Low-grade inflammation in adipose tissue is recognized as a critical event in the development of obesity-related co-morbidities. This chronic inflammation is powerfully augmented through the infiltration of macrophages, which together with adipocytes, perpetuate a vicious cycle of inflammatory cell recruitment and secretion of free fatty acids and deleterious adipokines that predispose to greater incidence of metabolic complications. In the last decade, many factors have been identified to contribute to mounting unresolved inflammation in obese adipose tissue. Among them, pro-inflammatory lipid mediators (i.e., leukotrienes) derived from the omega-6 polyunsaturated arachidonic acid have been shown to play a prominent role. Of note, the same lipid mediators that initially trigger the inflammatory response also signal its termination by stimulating the formation of anti-inflammatory signals. Resolvins and protectins derived from the omega-3 polyunsaturated docosahexaenoic and eicosapentaenoic acids have emerged as a representative family of this novel class of autacoids with dual anti-inflammatory and pro-resolving properties that act as "stop-signals" of the inflammatory response. This review discusses the participation of these endogenous autacoids in the resolution of adipose tissue inflammation, with a special emphasis in the amelioration of obesity-related metabolic dysfunctions, namely insulin resistance and non-alcoholic fatty liver disease.

17.
Cancer Res ; 69(16): 6676-84, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19654293

RESUMO

TREX2 is a proofreading 3'-5' exonuclease that can be involved in genome maintenance; however, its biological role remains undefined. To better understand the function and physiologic relevance of TREX2, we generated mice deficient in TREX2 by targeted disruption of its unique coding exon. The knockout mice are viable and do not show relevant differences in growth, survival, lymphocyte development, or spontaneous tumor incidence compared with their wild-type counterparts over a period of up to 2 years. Also, we did not observe chromosomal instability or defects in cell proliferation and cell cycle upon loss of TREX2. We have observed that TREX2 expression is not ubiquitous, being expressed preferentially in tissues with stratified squamous epithelia, such as the skin or esophagus, and specifically in keratinocytes. Interestingly, TREX2-null mice are more susceptible to skin carcinogenesis induced by 7,12-dimethylbenz(a)anthracene (DMBA) compared with wild-type mice. This phenotype correlates with a reduction of DMBA-induced apoptosis in both the epidermis and keratinocytes of TREX2-null mice. Altogether, our results suggest a tumor suppressor role for TREX2 in skin carcinogenesis through which it contributes to keratinocyte apoptosis under conditions of genotoxic stress.


Assuntos
Carcinoma/genética , Exodesoxirribonucleases/genética , Predisposição Genética para Doença , Neoplasias Cutâneas/genética , 9,10-Dimetil-1,2-benzantraceno , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Apoptose/genética , Carcinógenos , Carcinoma/induzido quimicamente , Carcinoma/metabolismo , Células Cultivadas , Embrião de Mamíferos , Exodesoxirribonucleases/metabolismo , Feminino , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA