Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Catal ; 13(20): 13484-13505, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881789

RESUMO

In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.

2.
J Chromatogr A ; 1427: 8-15, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26689825

RESUMO

Efficient selective sample enrichment is often a key procedure in protocols for analyses of complex samples. This applies not only to trace sample components but also to species with weak detection response. For example enrichment of phosphopeptides using selective affinity techniques prior to mass spectrometry analysis is necessary to increase detection sensitivity of phosphopeptides from highly complex peptide mixtures. In this work we have developed inorganic nanofibrous materials based on titanium or zirconium dioxides for selective and efficient enrichment of phosphopeptides for MALDI/MS detection. In comparison to the common bead based materials the presented nanofibrous materials exhibit much higher permeability allowing their use not only for batch mode or packed in the column operation, but also in the pipette tip format without the need for high pressure. Both the methods of preparation and characterization of the resulting materials are presented.


Assuntos
Nanofibras , Fosfopeptídeos/isolamento & purificação , Titânio/química , Zircônio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA