Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 24(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505884

RESUMO

Most of the current amine hardeners are petro-sourced and only a few studies have focused on the research of bio-based substitutes. Hence, in an eco-friendly context, our team proposed the design of bio-based amine monomers with aromatic structures. This work described the use of the reductive amination with imine intermediate in order to obtain bio-based pluri-functional amines exhibiting low viscosity. The effect of the nature of initial aldehyde reactant on the hardener properties was studied, as well as the reaction conditions. Then, these pluri-functional amines were added to petro-sourced (diglycidyl ether of bisphenol A, DGEBA) or bio-based (diglycidyl ether of vanillin alcohol, DGEVA) epoxy monomers to form thermosets by step growth polymerization. Due to their low viscosity, the epoxy-amine mixtures were easily homogenized and cured more rapidly compared to the use of more viscous hardeners (<0.6 Pa s at 22 °C). After curing, the thermo-mechanical properties of the epoxy thermosets were determined and compared. The isophthalatetetramine (IPTA) hardener, with a higher number of amine active H, led to thermosets with higher thermo-mechanical properties (glass transition temperatures (Tg and Tα) were around 95 °C for DGEBA-based thermosets against 60 °C for DGEVA-based thermosets) than materials from benzylamine (BDA) or furfurylamine (FDA) that contained less active hydrogens (Tg and Tα around 77 °C for DGEBA-based thermosets and Tg and Tα around 45 °C for DGEVA-based thermosets). By comparing to industrial hardener references, IPTA possesses six active hydrogens which obtain high cross-linked systems, similar to industrial references, and longer molecular length due to the presence of two alkyl chains, leading respectively to high mechanical strength with lower Tg.


Assuntos
Aldeídos/química , Aminas/química , Resinas Epóxi/química , Polímeros/química , Resinas Epóxi/síntese química , Polímeros/síntese química , Temperatura , Resistência à Tração , Viscosidade
2.
ChemSusChem ; 11(3): 547-551, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29319232

RESUMO

The alkylation of alcohols and polyols has been investigated with alkylphosphates in the presence of a Lewis or Brønsted acid catalyst. The permethylation of polyols was developed under solvent-free conditions at 100 °C with either iron triflate or Aquivion PW98, affording the isolated products in yields between 52 and 95 %. The methodology was also adjusted to carry out peralkylation with longer alkyl chains.


Assuntos
Ácidos de Lewis/química , Organofosfatos/química , Polímeros/química , Alquilação , Catálise , Temperatura Alta , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA