Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Microbiol Biotechnol ; 107(11): 3699-3716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37083969

RESUMO

Fungal colorants are gradually entering the global color market, given their advantages of being less harmful to human health, as well as having greater stability and biotechnological potential, compared to other natural sources. The present work concerns the isolation and identification of an endophytic filamentous fungus, together with the chemical characterization and assessment of the fluorescence, toxicity, stability, and application potential of its synthesized red colorant. The endophytic fungus was isolated from Hymenaea courbaril, a tree from the Brazilian savannah, and was identified as Talaromyces minnesotensis by phenotypic and genotypic characterization. Submerged cultivation of the fungus resulted in the production of approximately 12 AU500 of a red biocolorant which according to LC-DAD-MS analysis is characterized by being a complex mixture of molecules of the azaphilone class. Regarding cytotoxicity assays, activity against human hepatoblastoma (HepG2) cells was only observed at concentrations above 5.0 g L-1, while antimicrobial effects against pathogenic bacteria and yeast occurred at concentrations above 50.0 g L-1. The biocolorant showed high stability at neutral pH values and low temperatures (10 to 20 °C) and high half-life values (t1/2), which indicates potential versatility for application in different matrices, as observed in tests using detergent, gelatin, enamel, paint, and fabrics. The results demonstrated that the biocolorant synthesized by Talaromyces minnesotensis has potential for future biotechnological applications. KEY POINTS: • An endophytic fungus, which was isolated and identified, synthesize a red colorant. • The colorant showed fluorescence property, low toxicity, and application potential. • The red biocolorant was highly stable at pH 8.0 and temperatures below 20°C.


Assuntos
Talaromyces , Humanos , Temperatura , Temperatura Baixa , Alimentos , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae
2.
J Mass Spectrom ; 58(7): e4956, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37401101

RESUMO

Paper spray mass spectrometry (PS-MS) is an ambient ionization technique that allows for rapid and direct mass spectrometry analysis for a wide range of chemical compounds due to its portability, little to no sample preparation, and cost-effective materials. As applications with this technique continue to expand, the identification and discrimination of bacteria at the strain level remain a promising avenue for researchers. Although studies in the past demonstrated the applicability of PS-MS to discriminate bacteria at the strain level, no one has reported the strain-level differentiation of actinobacteria without using solvent for PS-MS. Hence, this study demonstrates that optimization of PS-MS permits the investigation and differentiation of the metabolic profiles of actinobacteria without the need for solvents, diminishing the potential for sample contamination and consequently increasing the versatility of this technique. In doing so, strains of actinobacteria (CAAT P5-21, CAAT P5-16, CAAT 8-25, CAAT P8-92, and CAAT P11-13) were grown and transferred to produce a crude growth medium. The supernatant was used for the PS-MS analyses using a Thermo Scientific LTQ mass spectrometer. Multivariate statistical analysis, including principal component analysis (PCA) and hierarchal cluster analysis (HCA), was employed to chemically distinguish the strains of bacteria. As a result, each strain of actinobacteria could be visually differentiated based on their metabolic profile. These findings demonstrate the practicability of using a liquid medium as an alternative to many other organic solvents when analyzing bacteria, making PS-MS a crucial addition to a microbiologist's research toolkit.


Assuntos
Actinobacteria , Actinobacteria/metabolismo , Solo , Espectrometria de Massas/métodos , Bactérias , Solventes/química , Metaboloma , Papel
3.
J Org Chem ; 73(14): 5549-57, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18570407

RESUMO

Reactions of the model acylium ion (CH3)2N-C(+)=O with acyclic, exocyclic, and spiro acetals of the general formula R(1)O-CR(3)R(4)-OR(2) were systematically evaluated via pentaquadrupole mass spectrometry. Characteristic intrinsic reactivities were observed for each of these classes of acetals. The two most common reactions observed were hydride and alkoxy anion [R(1)O(-) and R(2)O(-)] abstraction. Other specific reactions were also observed: (a) a secondary polar [4(+) + 2] cycloaddition for acetals bearing alpha,beta-unsaturated R(3) or R(4) substituents and (b) OH(-) abstraction for exocyclic and spiro acetals. These structurally diagnostic reactions, in conjunction with others observed previously for cyclic acetals, are shown to reveal the class of the acetal molecule and its ring type and substituents and to permit their recognition and distinction from other classes of isomeric molecules.

4.
Redox Biol ; 12: 291-299, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28285190

RESUMO

Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the Michaelis constant. Together, our results show that nitrate inhibits XOR-mediated NO production from nitrite, and this mechanism may explain how nitrate attenuates the vascular and blood pressure responses to nitrite.


Assuntos
Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitrito de Sódio/metabolismo , Xantina Desidrogenase/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Masculino , Modelos Biológicos , Nitratos/administração & dosagem , Óxido Nítrico/metabolismo , Compostos Nitrosos/farmacologia , Ratos , Nitrito de Sódio/administração & dosagem
5.
Carbohydr Res ; 345(16): 2348-53, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20850111

RESUMO

An α-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The α-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pI value of 4.5. Temperature and pH optima were 60°C and 4.0, respectively. The enzyme was stable for 1 h at 55°C, showing a t50 of 53 min at 60°C. Starch protected the enzyme against thermal inactivation. The α-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of α-amylase on Reagen® and Sigma® starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to α-amylases from Bacillus sp. These results confirmed that the studied enzyme was an α-amylase ((1→4)-α-glucan glucanohydrolase).


Assuntos
Paecilomyces/enzimologia , Temperatura , alfa-Amilases/isolamento & purificação , alfa-Amilases/metabolismo , Celulose/química , Físico-Química , Cromatografia por Troca Iônica , Estabilidade Enzimática , Etanolaminas/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Fatores de Tempo , alfa-Amilases/química
7.
J Ind Microbiol Biotechnol ; 35(1): 17-25, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938981

RESUMO

An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t (50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).


Assuntos
Estabilidade Enzimática , Glucana 1,4-alfa-Glucosidase/isolamento & purificação , Glucana 1,4-alfa-Glucosidase/metabolismo , Temperatura Alta , Paecilomyces/enzimologia , Sequência de Aminoácidos , Dicroísmo Circular , Meios de Cultura , Glucana 1,4-alfa-Glucosidase/química , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Paecilomyces/classificação , Paecilomyces/crescimento & desenvolvimento , Paecilomyces/fisiologia
8.
J Org Chem ; 67(14): 4652-8, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-12098272

RESUMO

The intrinsic gas-phase reactivity of cyclic N-acyliminium ions in Mannich-type reactions with the parent enol silane, vinyloxytrimethylsilane, has been investigated by double- and triple-stage pentaquadrupole mass spectrometric experiments. Remarkably distinct reactivities are observed for cyclic N-acyliminium ions bearing either endocyclic or exocyclic carbonyl groups. NH-Acyliminium ions with endocyclic carbonyl groups locked in s-trans forms participate in a novel tandem N-acyliminium ion reaction: the nascent adduct formed by simple addition is unstable and rearranges by intramolecular trimethylsilyl cation shift to the ring nitrogen, and an acetaldehyde enol molecule is eliminated. An NSi(CH(3))(3)-acyliminium ion is formed, and this intermediate ion reacts with a second molecule of vinyloxytrimethylsilane by simple addition to form a stable acyclic adduct. N-Acyl and N,N-diacyliminium ions with endocyclic carbonyl groups, for which the s-cis conformation is favored, react distinctively by mono polar [4(+) + 2] cycloaddition yielding stable, ressonance-stabilized cycloadducts. Product ions were isolated via mass-selection and structurally characterized by triple-stage mass spectrometric experiments. B3LYP/6-311G(d,p) calculations corroborate the proposed reaction mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA