Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Res ; 246: 15-32, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259527

RESUMO

Obesity is a widely prevalent pathology with a high exponential growth worldwide. Altered lipid accumulation by adipose tissue is one of the main causes of obesity and exploring lipid homeostasis in this tissue may represent a source for the identification of possible therapeutic targets. The study of the proteome and the post-translational modifications of proteins, specifically acetylation due to its involvement in energy metabolism, may be of great interest to understand the molecular mechanisms involved in adipose tissue dysfunction in obesity. The objective of this study was to characterize the subcutaneous and omental adipose tissue acetylome in conditions of obesity and insulin resistance and to describe the importance of acetylation of key molecules in adipose tissue to use them as therapeutic targets. The results describe for the first time the acetylome of subcutaneous and omental adipose tissue under physiological and physiopathological conditions such as obesity and insulin resistance. New evidence showed different acetylation patterns between two main depots and highlight the molecular complexity of adipose tissue. Results showed changes in FABP4 acetylation in subcutaneous fat in relation to insulin resistance, thus unveiling a potential marker of depot-specific dysfunctional expansion in obesity-associated metabolic disease. Furthermore, it is shown that the acetylation of FABP4 affects its function, modulating the capacity of differentiation in adipocytes. In conclusion, this study demonstrates a profound, depot-specific alteration of adipose tissue acetylome, wherein the acetylation of FABP4 may play a key role in adipocyte differentiation and lipid accumulation.


Assuntos
Resistência à Insulina , Adipócitos/metabolismo , Tecido Adiposo/patologia , Humanos , Lipídeos , Obesidade/patologia
2.
Cells ; 9(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438714

RESUMO

Different sources have been claimed for the embryonic origin of the coronary endothelium. Recently, the potential of circulating cells as progenitors of the cardiac endothelium has also been suggested. In a previous study we have shown that circulating progenitors are recruited by the embryonic endocardium and incorporated into the coronary vessels. These progenitors derive from a mesodermal lineage characterized by the expression of Gata4 under control of the enhancer G2. Herein, we aim to trace this specific lineage throughout postnatal stages. We have found that more than 50% of the adult cardiac endothelium derives from the G2-GATA4 lineage. This percentage increases from embryos to adults probably due to differential proliferation and postnatal recruitment of circulating endothelial progenitors. In fact, injection of fetal liver or placental cells in the blood stream of neonates leads to incorporation of G2-GATA4 lineage cells to the coronary endothelium. On the other hand, labeling of the hematopoietic lineage by the stage E7.5 also resulted in positive coronary endothelial cells from both, embryos and adults. Our results suggest that early hematopoietic progenitors recruited by the embryonic ventricular endocardium can become the predominant source of definitive endothelium during the vascularization of the heart.


Assuntos
Envelhecimento/metabolismo , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Fator de Transcrição GATA4/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/citologia , Endotélio/embriologia , Rim/citologia , Rim/embriologia , Mesoderma/embriologia , Camundongos , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA