RESUMO
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Cães , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Copy number variants (CNVs) are increasingly acknowledged as an important source of evolutionary novelties in the human lineage. However, our understanding of their significance is still hindered by the lack of primate CNV data. We performed intraspecific comparative genomic hybridizations to identify loci harboring copy number variants in each of the four great apes: bonobos, chimpanzees, gorillas, and orangutans. For the first time, we could analyze differences in CNV location and frequency in these four species, and compare them with human CNVs and primate segmental duplication (SD) maps. In addition, for bonobo and gorilla, patterns of CNV and nucleotide diversity were studied in the same individuals. We show that CNVs have been subject to different selective pressures in different lineages. Evidence for purifying selection is stronger in gorilla CNVs overlapping genes, while positive selection appears to have driven the fixation of structural variants in the orangutan lineage. In contrast, chimpanzees and bonobos present high levels of common structural polymorphism, which is indicative of relaxed purifying selection together with the higher mutation rates induced by the known burst of segmental duplication in the ancestor of the African apes. Indeed, the impact of the duplication burst is noticeable by the fact that bonobo and chimpanzee share more CNVs with gorilla than expected. Finally, we identified a number of interesting genomic regions that present high-frequency CNVs in all great apes, while containing only very rare or even pathogenic structural variants in humans.
Assuntos
Variações do Número de Cópias de DNA , Gorilla gorilla/genética , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética , Animais , Estruturas Cromossômicas , Hibridização Genômica Comparativa , Humanos , Filogenia , Polimorfismo Genético , Duplicações Segmentares GenômicasRESUMO
BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas. RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla. CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.
Assuntos
Genômica , Gorilla gorilla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Sequência de Aminoácidos , Animais , Feminino , Heterozigoto , Masculino , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNARESUMO
We study exact tests for (2 x 2) and (2 x 3) contingency tables, in particular exact chi-squared tests and exact tests of Fisher type. In practice, these tests are typically carried out without randomization, leading to reproducible results but not exhausting the significance level. We discuss that this can lead to methodological and practical issues in a multiple testing framework when many tables are simultaneously under consideration as in genetic association studies.Realized randomized p-values are proposed as a solution which is especially useful for data-adaptive (plug-in) procedures. These p-values allow to estimate the proportion of true null hypotheses much more accurately than their non-randomized counterparts. Moreover, we address the problem of positively correlated p-values for association by considering techniques to reduce multiplicity by estimating the "effective number of tests" from the correlation structure.An algorithm is provided that bundles all these aspects, efficient computer implementations are made available, a small-scale simulation study is presented and two real data examples are shown.
Assuntos
Algoritmos , Estudos de Associação Genética , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Biologia Computacional/métodos , Biologia Computacional/normas , Simulação por Computador , Perfilação da Expressão Gênica , Estudos de Associação Genética/estatística & dados numéricos , Marcadores Genéticos/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Distribuição Aleatória , Projetos de PesquisaRESUMO
MOTIVATION: Genome-wide association studies (GWAS) based on single nucleotide polymorphism (SNP) arrays are the most widely used approach to detect loci associated to human traits. Due to the complexity of the methods and software packages available, each with its particular format requiring intricate management workflows, the analysis of GWAS usually confronts scientists with steep learning curves. Indeed, the wide variety of tools makes the parsing and manipulation of data the most time consuming and error prone part of a study. To help resolve these issues, we present GWASpi, a user-friendly, multiplatform, desktop-able application for the management and analysis of GWAS data, with a novel approach on database technologies to leverage the most out of commonly available desktop hardware. GWASpi aims to be a start-to-finish GWAS management application, from raw data to results, containing the most common analysis tools. As a result, GWASpi is easy to use and reduces in up to two orders of magnitude the time needed to perform the fundamental steps of a GWAS. AVAILABILITY: Freely available on the web at http://www.gwaspi.org. Implemented in Java, Apache-Derby and NetCDF-3, with all major operating systems supported. CONTACT: gwaspi@upf.edu; arcadi.navarro@upf.edu.
Assuntos
Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Software , Humanos , InternetRESUMO
The granule-dependent exocytosis pathway is an important mechanism to induce apoptosis by CD8(+) T cells and NK cells and involves lytic molecules such as perforin. In the current study, we investigated the perforin 1 gene (PRF1) as a candidate for multiple sclerosis (MS) susceptibility in the Spanish population. We genotyped three PRF1 single nucleotide polymorphisms (rs885822, rs10999426, and rs3758562) in 420 patients with MS and 512 controls. Associations of PRF1 polymorphisms with the disease were restricted to male patients with MS, and the finding was consistently observed at the allele, genotype, and haplotype levels. Gender-associated differences were validated in an additional replication cohort comprised of 292 MS cases and 300 controls. In addition, we identified minor risk haplotypes strongly associated with male patients having primary progressive MS (PPMS). Further characterization of male patients with PPMS carrying the risk haplotypes by means of gene expression microarrays revealed overrepresentation of the cell killing gene ontology category among downregulated genes in these patients compared with male patients with PPMS carrying protective haplotypes. Moreover, PRF1 mRNA expression levels were significantly lower in patients with risk haplotypes, and changes in perforin protein expression by CD8(+) T cells mirrored those observed in gene expression. These findings suggest a gender dimorphism in the PRF1 association with MS and point to the presence of a generalized defect in the expression of genes that code for proteins involved in cell killing in a subgroup of male patients with PPMS.
Assuntos
Predisposição Genética para Doença , Esclerose Múltipla/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Caracteres Sexuais , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Feminino , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Genótipo , Haplótipos , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Perforina , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análiseRESUMO
Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.
RESUMO
BACKGROUND: Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies. RESULTS: We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations. CONCLUSIONS: Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations.
Assuntos
Predisposição Genética para Doença/genética , Povo Asiático , Evolução Biológica , Variação Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , População BrancaRESUMO
Historical genetic links among similar populations can be difficult to establish. Identity by descent (IBD) analyses find genomic blocks that represent direct genealogical relationships among individuals. However, this method has rarely been applied to ancient genomes because IBD stretches are progressively fragmented by recombination and thus not recognizable after few tens of generations. To explore such genealogical relationships, we estimated long IBD blocks among modern Europeans, generating networks to uncover the genetic structures. We found that Basques, Sardinians, Icelanders and Orcadians form, each of them, highly intraconnected sub-clusters in a European network, indicating dense genealogical links within small, isolated populations. We also exposed individual genealogical links -such as the connection between one Basque and one Icelandic individual- that cannot be uncovered with other, widely used population genetics methods such as PCA or ADMIXTURE. Moreover, using ancient DNA technology we sequenced a Late Medieval individual (Barcelona, Spain) to high genomic coverage and identified IBD blocks shared between her and modern Europeans. The Medieval IBD blocks are statistically overrepresented only in modern Spaniards, which is the geographically closest population. This approach can be used to produce a fine-scale reflection of shared ancestry across different populations of the world, offering a direct genetic link from the past to the present.
Assuntos
DNA Antigo , Etnicidade/genética , Variação Genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Europa (Continente) , Feminino , História Medieval , Humanos , Masculino , População Branca/históriaRESUMO
BACKGROUND: It is well known that the pattern of linkage disequilibrium varies between human populations, with remarkable geographical stratification. Indirect association studies routinely exploit linkage disequilibrium around genes, particularly in isolated populations where it is assumed to be higher. Here, we explore both the amount and the decay of linkage disequilibrium with physical distance along 211 gene regions, most of them related to complex diseases, across 39 HGDP-CEPH population samples, focusing particularly on the populations defined as isolates. Within each gene region and population we use r2 between all possible single nucleotide polymorphism (SNP) pairs as a measure of linkage disequilibrium and focus on the proportion of SNP pairs with r2 greater than 0.8. RESULTS: Although the average r2 was found to be significantly different both between and within continental regions, a much higher proportion of r2 variance could be attributed to differences between continental regions (2.8% vs. 0.5%, respectively). Similarly, while the proportion of SNP pairs with r2 > 0.8 was significantly different across continents for all distance classes, it was generally much more homogenous within continents, except in the case of Africa and the Americas. The only isolated populations with consistently higher LD in all distance classes with respect to their continent are the Kalash (Central South Asia) and the Surui (America). Moreover, isolated populations showed only slightly higher proportions of SNP pairs with r2 > 0.8 per gene region than non-isolated populations in the same continent. Thus, the number of SNPs in isolated populations that need to be genotyped may be only slightly less than in non-isolates. CONCLUSION: The "isolated population" label by itself does not guarantee a greater genotyping efficiency in association studies, and properties other than increased linkage disequilibrium may make these populations interesting in genetic epidemiology.
Assuntos
Genética Populacional , Genoma Humano , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Linhagem Celular , Genótipo , Humanos , Grupos Raciais/genética , Análise de Sequência de DNARESUMO
UNLABELLED: Single nucleotide polymorphisms (SNPs) are the most widely used marker in studies to assess associations between genetic variants and complex traits or diseases. They are also becoming increasingly important in the study of the evolution and history of humans and other species. The analysis and processing of SNPs obtained thanks to high-throughput technologies imply the time consuming and costly use of different, complex and usually format-incompatible software. SNPator is a user-friendly web-based SNP data analysis suite that integrates, among many other algorithms, the most common steps of a SNP association study. It frees the user from the need to have large computer facilities and an in depth knowledge of genetic software installation and management. Genotype data is directly read from the output files of the usual genotyping platforms. Phenotypic data on the samples can also be easily uploaded. Many different quality control and analysis procedures can be performed either by using built-in SNPator algorithms or by calling standard genetic software. AVAILABILITY: Access is granted from the SNPator webpage http://www.snpator.org.
Assuntos
Biologia Computacional/métodos , Internet , Polimorfismo de Nucleotídeo Único , Algoritmos , Animais , Evolução Biológica , Evolução Molecular , Genômica , Genótipo , Humanos , Modelos Estatísticos , Fenótipo , Controle de Qualidade , Software , Especificidade da EspécieRESUMO
The standard approach to the analysis of genome-wide association studies (GWAS) is based on testing each position in the genome individually for statistical significance of its association with the phenotype under investigation. To improve the analysis of GWAS, we propose a combination of machine learning and statistical testing that takes correlation structures within the set of SNPs under investigation in a mathematically well-controlled manner into account. The novel two-step algorithm, COMBI, first trains a support vector machine to determine a subset of candidate SNPs and then performs hypothesis tests for these SNPs together with an adequate threshold correction. Applying COMBI to data from a WTCCC study (2007) and measuring performance as replication by independent GWAS published within the 2008-2015 period, we show that our method outperforms ordinary raw p-value thresholding as well as other state-of-the-art methods. COMBI presents higher power and precision than the examined alternatives while yielding fewer false (i.e. non-replicated) and more true (i.e. replicated) discoveries when its results are validated on later GWAS studies. More than 80% of the discoveries made by COMBI upon WTCCC data have been validated by independent studies. Implementations of the COMBI method are available as a part of the GWASpi toolbox 2.0.
RESUMO
OBJECTIVES: We aimed to investigate the association between polymorphisms located in type I interferon (IFN)-induced genes, genes belonging to the toll-like receptor (TLR) pathway, and genes encoding neurotransmitter receptors and the response to IFN-ß treatment in patients with multiple sclerosis (MS). METHODS: In a first or screening phase of the study, 384 polymorphisms were genotyped in 830 patients with MS classified into IFN-ß responders (n = 416) and nonresponders (n = 414) according to clinical criteria. In a second or validation phase, the most significant polymorphisms associated with IFN-ß response were genotyped in an independent validation cohort of 555 patients with MS (281 IFN-ß responders and 274 nonresponders). RESULTS: Seven single nucleotide polymorphisms (SNPs) were selected from the screening phase for further validation: rs832032 (GABRR3; p = 0.0006), rs6597 (STUB1; p = 0.019), rs3747517 (IFIH1; p = 0.010), rs2277302 (PELI3; p = 0.017), rs10958713 (IKBKB; p = 0.003), rs2834202 (IFNAR1; p = 0.030), and rs4422395 (CXCL1; p = 0.017). None of these SNPs were significantly associated with IFN-ß response when genotyped in an independent cohort of patients. Combined analysis of these SNPs in all patients with MS (N = 1,385) revealed 2 polymorphisms associated with IFN-ß response: rs2277302 (PELI3; p = 0.008) and rs832032 (GABRR3; p = 0.006). CONCLUSIONS: These findings do not support an association between polymorphisms located in genes related to the type I IFN or TLR pathways or genes encoding neurotransmitter receptors and the clinical response to IFN-ß. Nevertheless, additional genetic and functional studies of PELI3 and GABRR3 are warranted.
RESUMO
IMPORTANCE: To provide clinical and genetic diagnoses for patients' conditions, it is important to identify and characterize the different subtypes of spinocerebellar ataxia (SCA). OBJECTIVE: To clinically and genetically characterize a Spanish kindred with pure SCA presenting with altered vertical eye movements. DESIGN Family study of ambulatory patients. Electro-oculographic and genetics studies were performed in 2 referral university centers. SETTING: Primary care institutional center in Spain. PARTICIPANTS: Thirty-six participants from a large Spanish kindred were clinically examined, and 33 family members were genetically examined. Detailed clinical data were obtained from 9 affected relatives. Two ataxic siblings and 2 asymptomatic family members were examined using an enhanced clinical protocol for a follow-up period of 7 years. MAIN OUTCOMES AND MEASURES: High-density genome-wide single-nucleotide polymorphism arrays, along with microsatellite analysis, and genetic linkage studies were performed. Whole-exome sequencing was used for 2 affected relatives. For most patients, the initial symptoms included falls, dysarthria, or clumsiness followed by a complete cerebellar syndrome. For all 9 affected relatives, we observed altered vertical eye movements, as initial ocular signs for 3 of them and for the 2 asymptomatic family members, all having inherited the risk haplotype. Neuroimaging showed isolated cerebellar atrophy. RESULTS: Initial genome-wide linkage analysis revealed suggestive linkage to chromosome 1p32. Multipoint analysis and haplotype reconstruction further traced this SCA locus to a 0.66-cM interval flanked by D1S200 and D1S2742 (z(max) = 6.539; P < .0001). The causative mutation was unidentified by exome sequencing. CONCLUSIONS AND RELEVANCE: We report a new subtype of SCA presenting in patients as slow progressing ataxia with altered vertical eye movements linked to a 11-megabase interval on 1p32. The Human Genome Nomenclature Committee has assigned this subtype of ataxia the designation SCA37.
Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 1/genética , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Adulto , Mapeamento Cromossômico/métodos , Movimentos Oculares/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Motilidade Ocular/classificação , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Ataxias Espinocerebelares/classificaçãoRESUMO
Association studies are the choice approach in the discovery of the genomic basis of complex traits. To carry out such analysis, researchers frequently need to (1) select optimally informative sets of Single Nucleotide Polymorphisms (SNPs) in candidate regions and (2) annotate the results of associations found by means of genome-wide SNP arrays. These are complex tasks, since many criteria have to be considered, including the SNPs' functional properties, technological information and haplotype frequencies in given populations. SYSNPs implements algorithms that allow for efficient and simultaneous consideration of all the relevant criteria to obtain sets of SNPs that properly cover arbitrarily large lists of genes or genomic regions. Complementarily, SYSNPs allows for comprehensive functional annotation of SNPs linked to any given marker SNP. SYSNPs dramatically reduces the effort needed for SNP selection from days of searching various databases to a few minutes using a simple browser.
Assuntos
Genômica/métodos , Internet , Polimorfismo de Nucleotídeo Único , Software , Algoritmos , Bases de Dados Genéticas , Análise de Sequência de DNA/métodosRESUMO
BACKGROUND: Interferon beta is 1 of 2 first-line treatments for relapsing-remitting multiple sclerosis (MS). However, not all patients respond to interferon beta therapy, and to date there is a lack of surrogate markers that reliably correlate with responsiveness to interferon beta therapy in MS. OBJECTIVE: To identify allelic variants that influence response to interferon beta therapy in patients with MS. DESIGN: Genome-wide scan. SETTING: Academic research. Patients Two hundred patients having relapsing-remitting MS treated with interferon beta and having a follow-up period of at least 2 years were classified as responders or nonresponders to treatment based on stringent clinical criteria. MAIN OUTCOME MEASURES: In the first phase of the study, a pooling-based genome-wide association study of 428 867 single-nucleotide polymorphisms (SNPs) was performed in 53 responders and 53 nonresponders to interferon beta therapy. After applying several selection criteria, 383 SNPs were individually genotyped in an independent validation cohort of 49 responders and 45 nonresponders to interferon beta therapy using a different genotyping platform. RESULTS: Eighteen SNPs had uncorrected P < .05 associated with interferon beta responder status in the validation cohort. Of these, 7 SNPs were located in genes that code for alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid-type glutamate receptor GRIA3, type 1 interferon-related proteins ADAR and IFNAR2, cell cycle-dependent protein CIT, zinc finger proteins ZFAT and ZFHX4, and guanosine triphosphatase-activating protein STARD13. CONCLUSIONS: This study supports an underlying polygenic response to interferon beta treatment in MS and highlights the importance of the glutamatergic system in patient response to interferon beta therapy.
Assuntos
Alelos , Antineoplásicos/uso terapêutico , Estudo de Associação Genômica Ampla , Interferon beta/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Polimorfismo de Nucleotídeo Único/genética , Adenosina Desaminase/genética , Adulto , Estudos de Coortes , DNA Helicases/genética , Feminino , Seguimentos , Proteínas Ativadoras de GTPase , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases , Proteínas de Ligação a RNA , Receptor de Interferon alfa e beta/genética , Receptores de AMPA/genética , Proteínas Recombinantes/uso terapêutico , Fatores de Transcrição/genética , Resultado do Tratamento , Proteínas Supressoras de Tumor/genéticaRESUMO
AIMS: We investigated the analytical performance of a new assay of the lactonase activity of paraoxonase-1 and its efficacy in the assessment of liver damage. DESIGN AND METHODS: Serum lactonase activity was determined by the hydrolysis of 5-thiobutyl butyrolactone in 633 healthy individuals and 369 patients with chronic liver disease. Paraoxonase-1, 2, and 3 gene polymorphisms were analyzed by the MassArray method. RESULTS: Linearity was up to 10 U/L. Detection limit was 0.12 U/L. Imprecision was < or = 17.7%. Lactonase values in our normal population were 5.99 (3.29-13.61) U/L. Lactonase activity showed a lower influence of genetic polymorphisms than the classical assay using paraoxon. Both measurements showed a similar efficiency in testing for liver dysfunction. CONCLUSION: We report a reliable assay using a non-toxic substrate for the measurement of serum lactonase activity. The influence of genetic variability is low. The assay could be a useful addition to tests evaluating liver impairment.