RESUMO
Treated wastewater is an important source of water for irrigation. As a result, irrigated crops are chronically exposed to wastewater-derived pharmaceuticals, such as the anticonvulsant drug lamotrigine. Lamotrigine is known to be taken up by plants, but its plant-derived metabolites and their distribution in different plant organs are unknown. This study aimed to detect and identify metabolites of lamotrigine in cucumber plants grown for 35 days in a hydroponic solution by using LC-MS/MS (Orbitrap) analysis. Our data showed that 96% of the lamotrigine taken up was metabolized. Sixteen metabolites possessing a lamotrigine core structure were detected. Reference standards confirmed two; five were tentatively identified, and nine molecular formulas were assigned. The data suggest that lamotrigine is metabolized via N-carbamylation, N-glucosidation, N-alkylation, N-formylation, N-oxidation, and amidine hydrolysis. The metabolites LTG-N2-oxide, M284, M312, and M370 were most likely produced in the roots and were translocated to the leaves. Metabolites M272, M312, M314, M354, M368, M370, and M418 were dominant in leaves. Only a few metabolites were detected in the fruits. With an increasing exposure time, lamotrigine leaf concentrations decreased because of continuous metabolism. Our data showed that the metabolism of lamotrigine in a plant is fast and that a majority of metabolites are concentrated in the roots and leaves.
Assuntos
Anticonvulsivantes , Cucumis sativus , Anticonvulsivantes/análise , Anticonvulsivantes/metabolismo , Lamotrigina/análise , Lamotrigina/metabolismo , Cucumis sativus/metabolismo , Águas Residuárias , Cromatografia Líquida , Espectrometria de Massas em TandemRESUMO
The anticonvulsant drug lamotrigine is a recalcitrant environmental pollutant. It was detected in drinking water, surface water, reclaimed wastewater, arable soils, and even in edible crops. In this work, we studied the mechanisms of lamotrigine transformation by a common redox soil mineral, birnessite, in a single-solute system and in bisolute systems with vanillic acid or o-methoxyphenol. In the single-solute system, 28% of lamotrigine was transformed and 14 transformation products (TPs) were identified. Based on a detailed analysis of the TPs, we suggested that lamotrigine is transformed mainly by oxidation, addition, and dechlorination reactions. In the bisolute systems, the redox-active phenolic compounds enhanced the elimination and transformation of lamotrigine. Vanillic acid was more efficient, generating 92% transformation of lamotrigine (58 TPs were identified), whereas o-methoxyphenol induced 48% transformation (35 TPs were identified). In the bisolute system with phenolic compounds, lamotrigine has possibly been transformed mainly via addition reactions with phenolic compounds and their oxidation products (protocatechuic acid, quinone, and oligomers). Thus, masses of the formed TPs were elevated as compared to the parent compound. The current study demonstrates the important role of redox-active minerals and naturally occurring phenolic compounds in abiotic removal and transformation of a recalcitrant environmental pollutant.
Assuntos
Anticonvulsivantes , Poluentes Químicos da Água , Lamotrigina , Minerais , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
Wastewater treatment plants play a crucial role in controlling the transport of pollutants to the environment and often discharge persistent contaminants such as synthetic microplastic fibers (MFs) to the ecosystem. In this study, we examined the fate and toxicity of polyethylene terephthalate (PET) MFs fabricated from commercial cloth in post-disinfection secondary effluents by employing conditions that closely mimic disinfection processes applied in wastewater treatment plants. Challenging conventional assumptions, this study illustrated that oxidative treatment by chlorination and ozonation incurred no significant modification to the surface morphology of the MFs. Additionally, experimental results demonstrated that both pristine and oxidized MFs have minimal adsorption potential towards contaminants of emerging concern in both effluents and alkaline water. The limited adsorption was attributed to the inert nature of MFs and low surface area to volume ratio. Slight adsorption was observed for sotalol, sulfamethoxazole, and thiabendazole in alkaline water, where the governing adsorption interactions were suggested to be hydrogen bonding and electrostatic forces. Acute exposure experiments on human cells revealed no immediate toxicity; however, the chronic and long-term consequences of the exposure should be further investigated. Overall, despite the concern associated with MFs pollution, this work demonstrates the overall indifference of MFs in WWTP (i.e., minor effects of disinfection on MFs surface properties and limited adsorption potential toward a mix of trace organic pollutants), which does not change their acute toxicity toward living forms.
Assuntos
Microplásticos , Águas Residuárias , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/química , Adsorção , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Águas Residuárias/química , Desinfecção , Humanos , Eliminação de Resíduos Líquidos/métodos , Polietilenotereftalatos/química , Polietilenotereftalatos/toxicidadeRESUMO
Reclaimed wastewater irrigation, a common agricultural practice in water-scarce regions, chronically exposes the agricultural environment to a wide range of contaminants of emerging concern (CECs) including pharmaceuticals and personal care products. Here we provide new data and insights into the processes governing the translocation of CECs in the irrigation water-soil-plant continuum based on a comprehensive dataset from 445 commercial fields irrigated with reclaimed wastewater. We report on CEC exposures in irrigation water, soils, and edible produce (leafy greens, carrots, potatoes, bananas, tomatoes, avocados, and citrus fruits). Our data show that CEC concentrations in irrigation water and their physiochemical properties (mainly charge and lipophilicity) are the main factors governing their translocation and accumulation in the soil-plant continuum. CECs exhibiting the highest detection frequency in plants (lamotrigine, venlafaxine, and carbamazepine) showed a reduction in their leaf accumulation factor with increasing soil organic matter content. The higher soil organic matter likely reduced the available CEC concentration in the soil solution due to soil-CEC interactions, leading to reduced uptake. Interestingly, the concentration of carbamazepine in the leaves showed a saturation-like trend when plotted against its concentration in the soils. This probably resulted from steady-state conditions when uptake equals in-planta decomposition. Our data indicate that due to continuous reclaimed wastewater irrigation, the soil acts as a sink for CECs. CECs in the soil reservoir can be desorbed into the soil solution during the rainy season and be taken up by rain-fed crops.
Assuntos
Poluentes do Solo , Águas Residuárias , Irrigação Agrícola/métodos , Produtos Agrícolas , Solo , Poluentes do Solo/análise , Águas Residuárias/químicaRESUMO
Irrigation with reclaimed wastewater is a growing practice aimed at conserving freshwater sources, especially in arid and semiarid regions. Despite the apparent advantages to water management, the practice of irrigation with reclaimed wastewater exposes the agroenvironment to contaminants of emerging concern (CECs). In this report, we estimated the unintentional dietary exposure of the Israeli population (2808 participants) to CECs from consumption of produce irrigated with reclaimed wastewater using detailed dietary data obtained from a National Health and Nutrition Survey (Rav Mabat adults; 2014-2016). Human health risk analyses were conducted based on acceptable daily intake (ADI) and threshold of toxicological concern (TTC) approaches. The highest unintentional exposure to wastewater-borne CECs was found to occur through the consumption of leafy vegetables. All analyzed CECs exhibited hazard quotients <1 for the mean- and high-exposure scenarios, indicating no human health concerns. However, for the extreme exposure scenario, the anticonvulsant agents lamotrigine and carbamazepine, and the carbamazepine metabolite epoxide-carbamazepine exhibited the highest exposure levels of 29,100, 27,200, and 19,500 ng/person (70 kg) per day, respectively. These exposure levels exceeded the TTC of lamotrigine and the metabolite epoxide-carbamazepine, and the ADI of carbamazepine, resulting in hazard quotients of 2.8, 1.1, and 1.9, respectively. According to the extreme estimated scenario, consumption of produce irrigated with reclaimed wastewater (leafy vegetables in particular) may pose a threat to human health. Minimizing irrigation of leafy vegetables using reclaimed wastewater and/or improving the quality of the reclaimed wastewater using an advanced treatment would significantly reduce human dietary exposure to CECs.
Assuntos
Irrigação Agrícola , Águas Residuárias , Adulto , Irrigação Agrícola/métodos , Anticonvulsivantes/metabolismo , Carbamazepina/metabolismo , Exposição Dietética , Compostos de Epóxi/metabolismo , Humanos , Lamotrigina/metabolismo , Verduras/metabolismoRESUMO
Pharmaceuticals and other contaminants of emerging concern (CECs) are continuously introduced into the agroecosystem via reclaimed wastewater irrigation, a common agricultural practice in water-scarce regions. Although reclaimed wastewater irrigated crops are sold and consumed, only limited information is available on the occurrence of pharmaceuticals and other CECs in edible produce. Here, we report data on CECs in irrigation water, soils, and crops collected from 445 commercial fields irrigated with reclaimed wastewater in Israel. The following produce were analyzed: leafy greens, carrot, potato, tomato, orange, tangerine, avocado, and banana. Pharmaceuticals and CECs were found in quantifiable levels in all irrigation water, soils, and plants (>99.6%). Leafy greens exhibited the largest number and the highest concentration of pharmaceuticals. Within the same crop, contamination levels varied due to wastewater source and quality of treatment, and soil characteristics. Anticonvulsants (carbamazepine, lamotrigine, and gabapentin) were the most dominant therapeutic group found in the reclaimed wastewater-soil-plant continuum. Antimicrobials were detected in ~85% of the water and soil samples, however they exhibited low detection frequencies and concentrations in produce. Irrigation with reclaimed wastewater should be limited to crops where the risk for pharmaceutical transfer to the food chain is minimal.
Assuntos
Preparações Farmacêuticas , Águas Residuárias , Irrigação Agrícola , Produtos Agrícolas , Israel , Águas Residuárias/análiseRESUMO
Treated wastewater (TWW) is increasingly used for agricultural irrigation, especially in arid and semi-arid regions. Carbamazepine is among the most frequently detected pharmaceuticals in TWW. Moreover, its uptake and accumulation have been demonstrated in crops irrigated with TWW. A previous controlled trial found that urine concentrations of carbamazepine were higher in healthy volunteers consuming TWW-irrigated produce as compared to freshwater-irrigated produce. The aim of the current study was to assess whether carbamazepine is quantifiable in urine of Israelis consuming their usual diets and whether concentrations vary according to age, personal characteristics and diet. In this cross-sectional study, we recruited 245 volunteers, including a reference group of omnivorous healthy adults aged 18-66; pregnant women; children aged 3-6 years; adults aged >75 years; and vegetarians/vegans. Participants provided spot urine samples and reported 24-hour and "usual" dietary consumption. Urinary carbamazepine levels were compared according to group, personal characteristics, health behaviors, and reported diet. Carbamazepine was detectable (≥1.66 ng/L) in urine of 84%, 76%, 75.5%, 66%, and 19.6% of the reference group, vegetarians, older adults, pregnant women, and children, respectively. Quantifiable concentrations (≥5.0 ng/L) of carbamazepine were found in 58%, 46%, 36.7%, 14%, and 0% of these groups, respectively (p = 0.001 for comparison of proportions across groups). In adults, higher carbamazepine concentrations were significantly associated (p < 0.05) with self-defined vegetarianism, usual consumption of dairy products and at least five vegetables/day, and no meat or fish consumption in the past 24-hours. This study demonstrates that people living in a water-scarce region with widespread TWW irrigation, are unknowingly exposed to carbamazepine. Individuals adhering to recommended guidelines for daily fresh produce consumption may be at higher risk of exposure to TWW-derived contaminants of emerging concern.
Assuntos
Irrigação Agrícola , Longevidade , Idoso , Carbamazepina , Criança , Pré-Escolar , Estudos Transversais , Dieta , Feminino , Humanos , Gravidez , Águas ResiduáriasRESUMO
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10⯵gâ¯L-1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Assuntos
Biodegradação Ambiental , Lamotrigina/metabolismo , Pleurotus/metabolismo , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologiaRESUMO
Abiotic mechanisms of oxytetracycline degradation by redox-active minerals, Fe(III)-saturated montmorillonite (Fe-SWy) and birnessite (δ-MnO2), were studied to better understand the environmental behavior of tetracycline antibiotics in aqueous systems. Kinetics of dissipation (adsorption, oxidation and formation of transformation products (TPs)), was investigated up to 7 days, and reaction mechanisms were elucidated based on identification of TPs by liquid chromatography mass spectrometry. Oxytetracycline was completely removed from solution by both minerals, however kinetics, TPs and mechanisms were distinct for each mineral. Oxytetracycline oxidation by δ-MnO2 occurred within minutes; 54 identified TPs were detected only in solution, most of them exhibited decreasing levels with time. In contrast, oxytetracycline was completely adsorbed by Fe-SWy, its degradation was slower, only 29 TPs were identified, among them 13 were surface-bound, and most of the TPs accumulated in the system with time. Oxytetracycline transformation by δ-MnO2 involved radicals, as was proven by electrochemical degradation. Reductive dissolution was observed for both minerals. X-ray photoelectron spectroscopy demonstrated accumulation of Fe(II) on Fe-SWy surface, whereas Mn(II) was primarily released from δ-MnO2 surface. Highly oxidized carbon species (i.e., newly formed TPs) were observed on the surface of both minerals interacting with oxytetracycline. This study demonstrates the impact of structure and reactivity of redox-active minerals on removal and decomposition of tetracycline antibiotics in aqueous systems.