RESUMO
Adintrevimab is a human immunoglobulin G1 monoclonal antibody engineered to have broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other SARS-like coronaviruses with pandemic potential. In both Syrian golden hamster and rhesus macaque models, prophylactic administration of a single dose of adintrevimab provided protection against SARS-CoV-2/WA1/2020 infection in a dose-dependent manner, as measured by significant reductions in lung viral load and virus-induced lung pathology, and by inhibition of viral replication in the upper and lower respiratory tract.
Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , COVID-19/prevenção & controle , Anticorpos Monoclonais/uso terapêutico , Macaca mulatta , Pulmão/patologia , Mesocricetus , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de CoronavírusRESUMO
Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.
Assuntos
Antimetabólitos/uso terapêutico , Antivirais/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Doenças dos Macacos/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Estimativa de Kaplan-Meier , Macaca fascicularis , Masculino , Doença do Vírus de Marburg/mortalidade , Doença do Vírus de Marburg/patologia , Doença do Vírus de Marburg/virologia , Doenças dos Macacos/mortalidade , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , RNA ViralRESUMO
A 9-year-old golden retriever dog was diagnosed with a left retrobulbar mass. Fine-needle aspirations and incisional biopsies resulted in discordant diagnoses: myxosarcoma/myxoma or rhadomyosarcoma, respectively. Immunohistochemistry following exenteration allowed definitive diagnosis of malignant peripheral nerve sheath tumor with fibromyxomatous differentiation. Fifteen weeks after surgery, an aggressive recurrence resulted in euthanasia.
Tumeur rétrobulbaire maligne des gaines nerveuses périphériques chez un Golden Retriever : un défi diagnostique. Une masse rétrobulbaire gauche a été diagnostiquée chez une Golden Retriever de 9 ans. Des aspirations à l'aiguille fine et des biopsies incisionnelles ont établi des diagnostics discordants : un myxosarcome/myxome ou un rhabdomyosarcome, respectivement. Suite à l'exentération, l'immunohistochimie a permis un diagnostic définitif de tumeur maligne des gaines nerveuses périphériques avec différenciation fibro-myxomateuse. Quinze semaines après la chirurgie, une récidive agressive a conduit à l'euthanasie de la chienne.(Traduit par les auteurs).
Assuntos
Doenças do Cão/diagnóstico , Mixoma/veterinária , Neoplasias de Bainha Neural/veterinária , Animais , Doenças do Cão/patologia , Doenças do Cão/cirurgia , Cães , Feminino , Imuno-Histoquímica/veterinária , Mixoma/diagnóstico , Mixoma/patologia , Mixoma/cirurgia , Recidiva Local de Neoplasia/veterinária , Neoplasias de Bainha Neural/diagnóstico , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/cirurgia , Exenteração Orbitária/veterináriaRESUMO
Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.
Assuntos
Doenças Transmissíveis , Orthohantavírus , Vírus de RNA , Animais , Cricetinae , Mutação Puntual , Protocaderinas , Caderinas , Mesocricetus , SíndromeRESUMO
The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.
Assuntos
COVID-19 , Aerossóis , Animais , Modelos Animais de Doenças , Macaca fascicularis , SARS-CoV-2 , Índice de Gravidade de DoençaRESUMO
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. B. pseudomallei is a potential bioterrorism agent due to its high infectivity, especially via inhalation, and its inherent resistance to antimicrobials. There is currently no vaccine for melioidosis and antibiotic treatment can fail due to innate drug resistance, delayed diagnosis and treatment, or insufficient duration of treatment. A well-characterized animal model that mimics human melioidosis is needed for the development of new medical countermeasures. This study first characterized the disease progression of melioidosis in the African green monkey (AGM) and rhesus macaque (RM) for non-human primate model down-selection. All AGMs developed acute lethal disease similar to that described in human acute infection following exposure to aerosolized B. pseudomallei strain HBPUB10134a. Only 20% of RMs succumbed to acute disease. Disease progression, immune response and pathology of two other strains of B. pseudomallei, K96243 and MSHR5855, were also compared using AGMs. These three B. pseudomallei strains represent a highly virulent strain from Thailand (HBPUB101034a), a highly virulent strains from Australia (MSHR5855), and a commonly used laboratory strains originating from Thailand (K96243). Animals were observed for clinical signs of infection and blood samples were analyzed for cytokine responses, blood chemistry and leukocyte changes in order to characterize bacterial infection. AGMs experienced fever after exposure to aerosolized B. pseudomallei at the onset of acute disease. Inflammation, abscesses and/or pyogranulomas were observed in lung with all three strains of B. pseudomallei. Inflammation, abscesses and/or pyogranulomas were observed in lymph nodes, spleen, liver and/or kidney with B. pseudomallei, HBPUB10134a and K96243. Additionally, the Australian strain MSHR5855 induced brain lesions in one AGM similar to clinical cases of melioidosis seen in Australia. Elevated serum levels of IL-1ß, IL-1 receptor antagonist, IL-6, MCP-1, G-CSF, HGF, IFNγ, MIG, I-TAC, and MIP-1ß at terminal end points can be significantly correlated with non-survivors with B. pseudomallei infection in AGM. The AGM model represents an acute model of B. pseudomallei infection for all three strains from two geographical locations and will be useful for efficacy testing of vaccines and therapeutics against melioidosis. In summary, a dysregulated immune response leading to excessive persistent inflammation and inflammatory cell death is the key driver of acute melioidosis. Early intervention in these pathways will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis.
Assuntos
Aerossóis , Burkholderia pseudomallei , Melioidose/microbiologia , Melioidose/patologia , Animais , Sudeste Asiático , Austrália , Bacteriemia , Medula Óssea/patologia , Quimiocinas/metabolismo , Chlorocebus aethiops , Citocinas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fígado/patologia , Pulmão/patologia , Macaca mulatta , Baço/patologia , Telemetria , Tailândia , VirulênciaRESUMO
Mouse models have been used to generate critical data for many infectious diseases. In the case of Burkholderia pseudomallei, mouse models have been invaluable for bacterial pathogenesis studies as well as for testing novel medical countermeasures including both vaccines and therapeutics. Mouse models of melioidosis have also provided a possible way forward to better understand the chronicity associated with this infection, as it appears that BALB/c mice develop an acute infection with B. pseudomallei, whereas the C57BL/6 model is potentially more suggestive of a chronic infection. Several unanswered questions, however, persist around this model. In particular, little attention has been paid to the effect of age or sex on the disease outcome in these animal models. In this report, we determined the LD50 of the B. pseudomallei K96243 strain in both female and male BALB/c and C57BL/6 mice in three distinct age groups. Our data demonstrated a modest increase in susceptibility associated with sex in this model, and we documented important histopathological differences associated with the reproductive systems of each sex. There was a statistically significant inverse correlation between age and susceptibility. The older mice, in most cases, were more susceptible to the infection. Additionally, our retrospective analyses suggested that the impact of animal supplier on disease outcome in mice may be minimal. These observations were consistent regardless of whether the mice were injected with bacteria intraperitoneally or if they were exposed to aerosolized bacteria. All of these factors should be considered when designing experiments using mouse models of melioidosis.
RESUMO
Hantaan virus (HTNV) and Puumala virus (PUUV) are rodent-borne hantaviruses that are the primary causes of hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. The development of well characterized animal models of HTNV and PUUV infection is critical for the evaluation and the potential licensure of HFRS vaccines and therapeutics. In this study we present three animal models of HTNV infection (hamster, ferret and marmoset), and two animal models of PUUV infection (hamster, ferret). Infection of hamsters with a ~3 times the infectious dose 99% (ID99) of HTNV by the intramuscular and ~1 ID99 of HTNV by the intranasal route leads to a persistent asymptomatic infection, characterized by sporadic viremia and high levels of viral genome in the lung, brain and kidney. In contrast, infection of hamsters with ~2 ID99 of PUUV by the intramuscular or ~1 ID99 of PUUV by the intranasal route leads to seroconversion with no detectable viremia, and a transient detection of viral genome. Infection of ferrets with a high dose of either HTNV or PUUV by the intramuscular route leads to seroconversion and gradual weight loss, though kidney function remained unimpaired and serum viremia and viral dissemination to organs was not detected. In marmosets a 1,000 PFU HTNV intramuscular challenge led to robust seroconversion and neutralizing antibody production. Similarly to the ferret model of HTNV infection, no renal impairment, serum viremia or viral dissemination to organs was detected in marmosets. This is the first report of hantavirus infection in ferrets and marmosets.
Assuntos
Infecções Assintomáticas , Febre Hemorrágica com Síndrome Renal/virologia , Orthohantavírus/fisiologia , Animais , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Células VeroRESUMO
The administration of antipyretic analgesics prior to, in conjunction with, or due to sequelae associated with vaccination is a common yet somewhat controversial practice. In the context of human vaccination, it is unclear if even short-term analgesic regimens can significantly alter the resulting immune response, as literature exists to support several scenarios including substantial immune interference. In this report, we used a live attenuated Yersinia pestis vaccine to examine the impact of analgesic administration on the immune response elicited by a single dose of a live bacterial vaccine in mice. Mice were assessed by evaluating natural and provoked behavior, as well as food and water consumption. The resulting immune responses were assessed by determining antibody titers against multiple antigens and assaying cellular responses in stimulated splenocytes collected from vaccinated animals. We observed no substantial benefit to the mice associated with the analgesic administration. Splenocytes from both C57BL/6 and BALB/c vaccinated mice receiving acetaminophen have a significantly reduced interferon-gamma (IFN-γ) recall response. Additionally, there is a significantly lower immunoglobulin (Ig)G2a/IgG1 ratio in vaccinated BALB/c mice treated with either acetaminophen or meloxicam and a significantly lower IgG2c/IgG1 ratio in vaccinated C57BL/6 mice treated with acetaminophen. Taken together, our data indicate that the use of analgesics, while possibly ethically warranted, may hinder the accurate characterization and evaluation of novel vaccine strategies with little to no appreciable benefits to the vaccinated mice.