Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(36): 45513-45526, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32794095

RESUMO

Cadmium (Cd) and zinc (Zn) toxicity causes physiological disorders and harms plants, interfering with the rehabilitation of areas affected by mining activities. This study evaluated how the exposure to Zn and/or Cd affects the growth of native andropogon grass (Andropogon gayanus Kunth) plants originally found in areas contaminated with Cd and/or Zn due to zinc mining activities. Plants were cultivated for 7 weeks in a nutrient solution treated with Zn (142.3-854.0 µM) or Cd (0.9-13.3 µM) separately or combined with a molar ratio of 64:1 (Zn:Cd). A control treatment was grown in a complete Hoagland and Arnon solution (without Cd). Plant height, stem diameter, internode length, dry weight, Cd and Zn concentration, and accumulation in shoots/roots, as well as ultrastructure of roots and leaves were analyzed at the end of the experiment. The root dry weight was not significantly affected by the addition of the metals. Moreover, Zn provided higher shoot dry weight (up to 160%) relative to control. Andropogon grass tolerated both metals better separately than when applied together. Transmission electron microscopy analyses showed modifications such as vesiculation and vacuolation in the ultrastructure of andropogon tissues by Cd and/or Zn. The andropogon grass was tolerant to the doses tested, evidencing that it has potential for recovering areas contaminated with Zn and/or Cd.


Assuntos
Andropogon , Poluentes do Solo , Bioacumulação , Cádmio/análise , Hidroponia , Raízes de Plantas/química , Poluentes do Solo/análise , Zinco/análise
2.
Chemosphere ; 221: 124-131, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639808

RESUMO

Cerium (Ce) is present in high technology materials and in mineral P fertilizers and the use and discharge of such resources may change the natural status of Ce in the soil environment. Brazilian soils in farming areas are significantly exposed to increased levels of unintentionally-added Ce through intensive input of phosphate fertilizers. The aims of this study were to evaluate the ecotoxicological risk to plants growing in tropical soils contaminated with Ce, as well as to create a database to support future legislation regulating the limits of this element in Brazilian and conceivably other tropical soils. Eight crop species (corn, sorghum, rice, wheat, soybeans, sunflower, radish, and beans) were exposed to a Ce concentration gradient in two typical tropical soils (Oxisol and Inceptsol), and an artificial soil. Our findings showed that among the endpoints measured, Ce phytotoxicity was more pronounced on shoot dry matter than on percent germination and germination speed index. Sensitivity of plants is species specific and our data showed that sunflower and radish exposed to Ce were the most sensitive crop species. Soil properties such as pH, cation exchange capacity, and organic carbon may have influenced the severity of Ce phytotoxicity. Because of that, the Oxisol contaminated with this element caused higher phytotoxicity than the other soils tested. Our risk assessment results (hazardous concentration, HC5 = 281.6 mg Ce kg-1) support the idea that unintentional Ce input through P fertilizers does not pose a risk to soils of Brazilian agroecosystems.


Assuntos
Agricultura , Cério/toxicidade , Ecotoxicologia/métodos , Brasil , Fertilizantes/toxicidade , Oryza , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA