Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Biotechnol J ; 17(7): 1261-1275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30549178

RESUMO

Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.


Assuntos
Índice Glicêmico , Oryza/química , Oryza/genética , Transcriptoma , Animais , Digestão , Perfilação da Expressão Gênica , Estudos de Associação Genética , Haplótipos , Humanos , Análise da Randomização Mendeliana , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Suínos
2.
J Exp Bot ; 70(19): 5115-5130, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31145789

RESUMO

Higher head rice yield (HRY), which represents the proportion of intact grains that survive milling, and lower grain chalkiness (opacity) are key quality traits. We investigated the genetic basis of HRY and chalkiness in 320 diverse resequenced accessions of indica rice with integrated single- and multi-locus genome-wide association studies using 2.26 million single-nucleotide polymorphisms. We identified novel haplotypes that underly higher HRY on chromosomes 3, 6, 8, and 11, and that lower grain chalkiness in a fine-mapped region on chromosome 5. Whole-genome sequencing of 92 IRRI breeding lines was performed to identify the genetic variants of HRY and chalkiness. Rare and novel haplotypes were found for lowering chalkiness, but missing alleles hindered progress towards enhancing HRY in breeding material. The novel haplotypes that we identified have potential use in breeding programs aimed at improving these important traits in the rice crop.


Assuntos
Grão Comestível/fisiologia , Estudo de Associação Genômica Ampla , Oryza/fisiologia , Fenótipo , Grão Comestível/genética , Haplótipos , Oryza/genética , Polimorfismo de Nucleotídeo Único
3.
Plant Biotechnol J ; 14(1): 364-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26010869

RESUMO

Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality.


Assuntos
Pão , Farinha , Engenharia de Proteínas/métodos , Sementes/enzimologia , Triticum/embriologia , alfa-Amilases/metabolismo , Amido/análise , Viscosidade
4.
Plant Biotechnol J ; 14(1): 398-408, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25989474

RESUMO

Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.


Assuntos
Cotilédone/crescimento & desenvolvimento , Endosperma/enzimologia , Germinação , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Sementes/anatomia & histologia , Triticum/enzimologia , Água/metabolismo , Amilopectina/metabolismo , Dureza , Modelos Biológicos , Tamanho do Órgão , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Amido/metabolismo , Transgenes , Triticum/anatomia & histologia , Triticum/embriologia , alfa-Amilases/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(20): 8057-62, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630259

RESUMO

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Assuntos
Ploidias , Triticum/genética , Alelos , Produtos Agrícolas/genética , Frequência do Gene , Genes de Plantas , Variação Genética , Genoma de Planta , Genótipo , Haplótipos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
6.
Int J Food Sci Nutr ; 67(6): 678-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27282074

RESUMO

Using barley cultivars differing widely in ß-glucan content, we aimed to determine their effects on small intestinal macronutrient digestion in 24 ileorectostomised rats. The rats were fed 1 of 4 experimental diets, each containing a different barley variety, for 11 d. The diets had a content of 0, 2.1, 2.6 and 4.3 g of ß-glucan/100 g. Feed intake and faecal excretion of fat, protein, starch, and non-starch polysaccharides were determined in the final 5 d of the study and apparent macronutrient digestibility calculated. Higher dietary levels of ß-glucan (2.6% and 4.3%) lowered feed intake (by 15 and 19%, respectively) but final body weight was only lowered by the 4.3% ß-glucan diet relative to rats fed the 0% ß-glucan diet (all ps < 0.05). Protein, lipid and starch digestibility was unrelated to the dietary ß-glucan content. Higher dietary levels of barley ß-glucan lower feed intake of ileorectostomised rats, which is independent of intestinal fermentation and unrelated to macronutrient digestibility.


Assuntos
Digestão , Hordeum/química , Ileostomia , Intestino Delgado/metabolismo , Grãos Integrais/química , beta-Glucanas/análise , Animais , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/análise , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/análise , Fezes/química , Fermentação , Masculino , Polissacarídeos/administração & dosagem , Polissacarídeos/análise , Ratos , Ratos Sprague-Dawley , Amido/administração & dosagem , Amido/análise , beta-Glucanas/administração & dosagem
7.
Theor Appl Genet ; 128(7): 1407-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893467

RESUMO

KEY MESSAGE: The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.


Assuntos
Amilose/química , Endosperma/química , Hordeum/genética , Oryza/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/genética , Enzima Ramificadora de 1,4-alfa-Glucana/química , DNA de Plantas/genética , Endosperma/enzimologia , Pleiotropia Genética , Genótipo , Hordeum/enzimologia , Mutação , Oryza/enzimologia , Fenótipo , Plastídeos/enzimologia , Sintase do Amido/química , Triticum/enzimologia
8.
Dig Dis Sci ; 60(6): 1624-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25616610

RESUMO

BACKGROUND AND AIM: Dietary fiber shortens gut transit time, but data on the effects of fiber components (including resistant starch, RS) on intestinal contractility are limited. We have examined RS effects in male Sprague-Dawley rats fed either a high-amylose maize starch (HAMS) or a wholemeal made from high-amylose wheat (HAW) on ileal and colonic contractility ex vivo and expression of genes associated with smooth muscle contractility. METHODS: Rats were fed diets containing 19 % fat, 20 % protein, and either low-amylose maize starch (LAMS), HAMS, wholemeal low-amylose wheat (LAW) or HAW for 11 week. Isolated ileal and proximal colonic sections were induced to contract electrically, or by receptor-independent (KCl) or receptor-dependent agents. Colonic gene expression was assessed using an Affymetrix microarray. RESULTS: Ileal contractility was unaffected by treatment. Maximal proximal colonic contractility induced electrically or by angiotensin II or carbachol was lower for rats fed HAMS and LAW relative to those fed LAMS (P < 0.05). The colonic expression of genes, including cholinergic receptors (Chrm2, Chrm3), serotonin receptors (Htr5a, Htr7), a protease-activated receptor (F2r), a prokineticin receptor (Prokr1), prokineticin (Prok1), and nitric oxide synthase 2 (Nos2), was altered by dietary HAMS relative to LAMS (P < 0.05). HAW did not significantly affect these genes or colonic contractility relative to effects of LAMS. CONCLUSIONS: RS and other fiber components could influence colorectal health through modulation of stool transit time via effects on muscular contractility.


Assuntos
Dieta Ocidental , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/genética , Expressão Gênica , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Amido/farmacologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Zea mays
9.
Plant Biotechnol J ; 12(2): 219-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24151921

RESUMO

Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F(2) -derived, F(6:7) RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow-sense heritabilities were high for coleoptile and shoot length (h(2) = 0.68-0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht-B1b (-8.2%) and Rht-D1b (-10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht-B1 and Rht-D1 loci. A large coleoptile length effect allele (a = 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (r(g) = 0.85-0.90) support the co-location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cotilédone/genética , Locos de Características Quantitativas/genética , Plântula/genética , Triticum/genética , Alelos , Cruzamento , Cotilédone/crescimento & desenvolvimento , Cruzamentos Genéticos , Genômica , Genótipo , Fenótipo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Solo , Temperatura , Triticum/crescimento & desenvolvimento
10.
J Exp Bot ; 65(18): 5443-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053646

RESUMO

Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling.


Assuntos
Triticum/enzimologia , Triticum/metabolismo , alfa-Amilases/metabolismo , Metabolismo dos Carboidratos/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triglicerídeos/metabolismo , Triticum/genética , alfa-Amilases/genética
11.
J Exp Bot ; 65(8): 2189-201, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634486

RESUMO

Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sintase do Amido/genética , Amido/genética , Triticum/anatomia & histologia , Triticum/genética , Endosperma/anatomia & histologia , Endosperma/genética , Endosperma/metabolismo , Endosperma/ultraestrutura , Microscopia Eletrônica de Varredura , Proteínas de Plantas/metabolismo , Sementes/anatomia & histologia , Sementes/química , Sementes/genética , Sementes/ultraestrutura , Amido/metabolismo , Amido/ultraestrutura , Sintase do Amido/metabolismo , Triticum/metabolismo
12.
Biochem J ; 448(3): 373-87, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22963372

RESUMO

The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of SSIIa and sheds new light on its central role in protein-protein interactions and determination of the starch granule proteome. The mutant SSIIa revealed two amino acid substitutions, one being a highly conserved residue (Gly522→Arg) responsible for the loss of catalytic activity and the inability of the mutant SSIIa to bind to starch. Analysis of protein-protein interactions in sugary-2 amyloplasts revealed the same trimeric assembly of soluble SSI, SSIIa and SBE (starch-branching enzyme) IIb found in wild-type amyloplasts, but with greatly reduced activities of SSI and SBEIIb. Chemical cross-linking studies demonstrated that SSIIa is at the core of the complex, interacting with SSI and SBEIIb, which do not interact directly with each other. The sugary-2 mutant starch granules were devoid of amylopectin-synthesizing enzymes, despite the fact that the respective affinities of SSI and SBEIIb from sugary-2 for amylopectin were the same as observed in wild-type. The data support a model whereby granule-bound proteins involved in amylopectin synthesis are partitioned into the starch granule as a result of their association within protein complexes, and that SSIIa plays a crucial role in trafficking SSI and SBEIIb into the granule matrix.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glucanos/química , Glicogênio Sintase/química , Proteínas de Plantas/química , Sintase do Amido/química , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Alelos , Sequência de Aminoácidos , Amilopectina/química , Glucanos/genética , Glicogênio Sintase/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica/genética , Amido/genética , Sintase do Amido/genética , Zea mays/enzimologia
13.
J Sci Food Agric ; 93(9): 2137-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23288583

RESUMO

BACKGROUND: Starch is synthesized in both leaves and storage tissues of plants. The role of starch syntheses and branching enzymes is well understood; however, the role of starch phosphorylase is not clear. RESULTS: A gene encoding Pho1 from barley was characterized and starch phosphorylases from both developing and germinating grain were characterized and purified. Two activities were detected: one with a molecular mass of 110 kDa and the other of 95 kDa. It was demonstrated through the use of antisera that the 110 kDa activity was located in the amyloplast and could correspond to the polypeptide encoded by the Pho1 gene cloned. The 95 kDa activity was localized to the cytoplasm, most strongly expressed in germinating grain, and was classified as a Pho2-type sequence. Using RNAi technology to reduce the content of Pho1 in the grain to less than 30% of wild type did not lead to any visible phenotype, and no dramatic alterations in the structure of the starch were observed. CONCLUSION: Two starch phosphorylase activities were identified and characterized in barley grains, and shown to be present during starch synthesis. However, their role in starch synthesis still remains to be elucidated.


Assuntos
Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Amido Fosforilase/metabolismo , Sequência de Aminoácidos , Citoplasma/enzimologia , Endosperma/enzimologia , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Germinação , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/enzimologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Amido/biossíntese , Amido/química , Amido Fosforilase/química , Amido Fosforilase/genética , Amido Fosforilase/isolamento & purificação
14.
Plant Biotechnol J ; 10(7): 826-39, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22594629

RESUMO

We present the first results from a novel multiparent advanced generation inter-cross (MAGIC) population derived from four elite wheat cultivars. The large size of this MAGIC population (1579 progeny), its diverse genetic composition and high levels of recombination all contribute to its value as a genetic resource. Applications of this resource include interrogation of the wheat genome and the analysis of gene-trait association in agronomically important wheat phenotypes. Here, we report the utilization of a MAGIC population for the first time for linkage map construction. We have constructed a linkage map with 1162 DArT, single nucleotide polymorphism and simple sequence repeat markers distributed across all 21 chromosomes. We benchmark this map against a high-density DArT consensus map created by integrating more than 100 biparental populations. The linkage map forms the basis for further exploration of the genetic architecture within the population, including characterization of linkage disequilibrium, founder contribution and inclusion of an alien introgression into the genetic map. Finally, we demonstrate the application of the resource for quantitative trait loci mapping using the complex traits plant height and hectolitre weight as a proof of principle.


Assuntos
Cruzamentos Genéticos , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta/genética , Endogamia , Desequilíbrio de Ligação/genética , Modelos Genéticos , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Reprodutibilidade dos Testes , Triticum/anatomia & histologia
15.
Plant Biotechnol J ; 10(7): 871-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22672098

RESUMO

A novel mechanism for increasing vegetative biomass and grain yield has been identified in wheat (Triticum aestivum). RNAi-mediated down-regulation of Glucan, Water-Dikinase (GWD), the primary enzyme required for starch phosphorylation, under the control of an endosperm-specific promoter, resulted in a decrease in starch phosphate content and an increase in grain size. Unexpectedly, consistent increases in vegetative biomass and grain yield were observed in subsequent generations. In lines where GWD expression was decreased, germination rate was slightly reduced. However, significant increases in vegetative growth from the two leaf stage were observed. In glasshouse pot trials, down-regulation of GWD led to a 29% increase in grain yield while in glasshouse tub trials simulating field row spacing and canopy development, GWD down-regulation resulted in a grain yield increase of 26%. The enhanced yield resulted from a combination of increases in seed weight, tiller number, spikelets per head and seed number per spike. In field trials, all vegetative phenotypes were reproduced with the exception of increased tiller number. The expression of the transgene and suppression of endogenous GWD RNA levels were demonstrated to be grain specific. In addition to the direct effects of GWD down-regulation, an increased level of α-amylase activity was present in the aleurone layer during grain maturation. These findings provide a potentially important novel mechanism to increase biomass and grain yield in crop improvement programmes.


Assuntos
Biomassa , Regulação para Baixo/genética , Endosperma/enzimologia , Fosfotransferases (Aceptores Pareados)/metabolismo , Proteínas de Plantas/metabolismo , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Metabolismo dos Carboidratos/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/efeitos da radiação , Glucanos/metabolismo , Luz , Fosfatos/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Amido/metabolismo , Triticum/genética , Triticum/efeitos da radiação , alfa-Amilases/metabolismo
16.
Plant Biotechnol J ; 10(6): 703-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22681313

RESUMO

The large and complex genome of wheat makes genetic and genomic analysis in this important species both expensive and resource intensive. The application of next-generation sequencing technologies is particularly resource intensive, with at least 17 Gbp of sequence data required to obtain minimal (1×) coverage of the genome. A similar volume of data would represent almost 40× coverage of the rice genome. Progress can be made through the establishment of consortia to produce shared genomic resources. Australian wheat genome researchers, working with Bioplatforms Australia, have collaborated in a national initiative to establish a genetic diversity dataset representing Australian wheat germplasm based on whole genome next-generation sequencing data. Here, we describe the establishment and validation of this resource which can provide a model for broader international initiatives for the analysis of large and complex genomes.


Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Triticum/genética , Austrália , Bases de Dados Genéticas , Variação Genética , Análise de Sequência de DNA
17.
J Exp Bot ; 63(3): 1167-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22121198

RESUMO

Amylose extender (ae(-)) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae(-) maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein-protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae(-) mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272-Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16-20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-(32)P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn(2+)-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule.


Assuntos
Amilose/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Alelos , Amilopectina/genética , Amilopectina/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plastídeos/metabolismo , Amido/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Zea mays/genética
18.
J Nutr ; 142(5): 832-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22457395

RESUMO

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated inversely with total large bowel SCFA, including colonic butyrate concentration (R(2) = 0.40; P = 0.009), and positively with colonic ammonia concentration (R(2) = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW. The expression of colonic genes associated with the maintenance of genomic integrity (notably Mdm2, Top1, Msh3, Ung, Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene expression differ, possibly due to the presence of other fiber components in HAW.


Assuntos
Bactérias/efeitos dos fármacos , Colo/microbiologia , Colo/fisiologia , Neoplasias Colorretais/prevenção & controle , Dano ao DNA/fisiologia , Amido/farmacologia , Amilose/farmacologia , Ração Animal , Animais , Bactérias/crescimento & desenvolvimento , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Carboidratos da Dieta/farmacologia , Fibras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Masculino , Metagenoma/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Zea mays
19.
J Exp Bot ; 62(14): 5217-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813797

RESUMO

In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 'high amylose Glacier'. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis.


Assuntos
Regulação para Baixo , Hordeum/enzimologia , Proteínas de Plantas/genética , Sintase do Amido/genética , Amilose/biossíntese , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Amido/biossíntese , Sintase do Amido/metabolismo
20.
J Exp Bot ; 62(14): 4927-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791436

RESUMO

The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Regulação para Baixo , Sequências Repetidas Invertidas , MicroRNAs/genética , Oryza/enzimologia , Proteínas de Plantas/genética , Interferência de RNA , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/química , MicroRNAs/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Amido/biossíntese , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA