Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 9(26): 28903-28911, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973937

RESUMO

The new generation of Li-ion batteries is based on integrating 2D materials into the electrodes to increase the energy density while reducing the charging time and size. The two-dimensional transition metal carbide or nitride (MXene) materials offer ideal electronic properties, such as metallic behavior, low energy barriers for Li-ion diffusion, and structural stability. This study focuses on Nb2C and Nb2CO2 MXenes, which have shown promising Li-storage capacity, especially the oxidized phase. By using density functional theory (DFT) and thermodynamic criteria, we studied the Li intercalation process in both MXenes. The results show that the Li intercalation process in the oxidized phase is more stable. Also, the Li diffusion barriers are 35 and 250 meV for the bare and oxidized phase, due to the strong interaction between Li ions and O functional groups. Nb2C and Nb2CO2 MXenes deliver a maximum gravimetric theoretical capacity of 275 and 233.26 mA h/g, respectively, with a stable performance.

2.
Sci Rep ; 13(1): 3271, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841864

RESUMO

By first-principles total-energy calculations, we investigated the thermodynamic stability of the MAX solid solution MoxV4-xAlC3 in the 0 ≤ x ≤ 4 range. Results evidence that lattice parameter a increases as a function of Mo content, while the c parameter reaches its maximum expansion at x = 2.5. After that, a contraction is noticed. Mo occupies VI sites randomly until the out-of-plane ordered Mo2V2AlC3 alloy is formed. We employed the Defect Formation Energy (DFE) formalism to evaluate the thermodynamic stability of the alloys. Calculations show five stable compounds. At V-rich conditions and from Mo-rich to Mo-moderated conditions, the pristine V4AlC3 MAX is stable. In the region of V-poor conditions, from Mo-rich to Mo-moderated growth conditions, the solid solutions with x = 0.5, 1, and 1.5 and the o-MAX Mo2V2AlC3 are thermodynamically stable. The line profiles of the Electron Localization Function and Bader charge analysis show that the V-C interaction is mainly ionic, while the Mo-C is covalent. Also, the exfoliation energy to obtain a MXene layer is ~ 0.4 eV/Å2. DFE also shows that MXenes exfoliated from the MAX phase with the same Mo content and atomic arrangement are thermodynamically stable. Our results get a deeper atomic scale understanding of the previously reported experimental evidence.

3.
Sci Rep ; 12(1): 8340, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585113

RESUMO

Drinking water scarcity in arid and semi-arid regions is a reality that may turn into a global healthcare problem in the next few years. The scientific community is always looking for new materials to achieve effective sea and brackish water desalination to reduce water scarcity. Commonly, theoretical, and experimental methods make a synergy to better understand and explain the chemical and physical processes in water desalination electrodes. In this way, experimental evidence pointed Mo1.33CTx MXene as an efficient ion intercalation material, in which both Na+ and Cl- are removed. However, the atomic scale understanding of the physicochemical processes due to the Na and Cl interaction with the MXene is still unknown. We report the Na0 and Cl0 interaction with an OH functionalized Mo1.33C monolayer through a comprehensive first-principles density functional theory assessment. Results demonstrate that Na atoms attach to Oxygen, whereas Cl atoms bond through hydrogen bonds to the functional groups in the MXene, these bonds have two energy contributions: electrostatic and charge transfer, which increases its adsorption energy. Electrostatic potential isosurfaces, Bader charge analysis, and non-covalent interactions index help clarifying the way Na0 and Cl0 attach to the MXene layer. Oxygen atoms have an affinity for the electropositive Na0 atoms, which after interaction oxidizes to Na+, whereas hydrogen atoms-of the hydroxyl groups-interact with the electronegative Cl0 atoms, which upon adsorption reduce to Cl-. Our findings explain why OH-functionalized Mo1.33C can efficiently remove both Na and Cl atoms based on their affinities with the functional groups present in the MXene layer.

4.
ACS Omega ; 7(38): 33884-33894, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188272

RESUMO

Structural, electronic, and magnetic properties of two-dimensional Cr2N MXene under strain were studied. The uniaxial and biaxial strain was considered from -5 to 5%. Phonon dispersion was calculated; imaginary frequency was not found for both kinds of strain. Phonon density of states displays an interesting relation between strain and optical phonon gaps (OPGs), that it implies tunable thermal conductivity. When we apply biaxial tensile strain, the OPG increases; however, this is not appreciable under uniaxial strain. The electronic properties of the dynamically stable systems were investigated by calculating the band structure and electron localization function (ELF) along the (110) plane. The band structure showed a metallic behavior under compressive strain; nevertheless, under tensile strain, the system has a little indirect band gap of 0.16 eV. By analyzing, the ELF interactions between Cr-N are determined to be a weaker covalent bonding Cr2N under tensile strain. On the other hand, if the Cr atoms reduce or increase their self-distance, the magnetization alignment changes, also the magnetic anisotropy energy displays out-of-plane spin alignment. These properties extend the potential applications of Cr2N in the spintronic area as long as they can be grown on substrates with high lattice mismatch, conserving their magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA