Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772518

RESUMO

The internet of things (IoT) makes it possible to measure physical variables and acquire data in places that were impossible a few years ago, such as transmission lines and electrical substations. Monitoring and fault diagnosis strategies can then be applied. A battery or an energy harvesting system charging a rechargeable battery typically powers IoT devices. The energy harvesting unit and rechargeable battery supply the sensors and wireless communications modules. Therefore, the energy harvesting unit must be correctly sized to optimize the availability and reliability of IoT devices. This paper applies a power balance of the entire IoT device, including the energy harvesting module that includes two thermoelectric generators and a DC-DC converter, the battery, and the sensors and communication modules. Due to the small currents typical of the different communication phases and their fast-switching nature, it is not trivial to measure the energy in each phase, requiring very specific instrumentation. This work shows that using conventional instrumentation it is possible to measure the energy involved in the different modes of communication. A detailed energy balance of the battery is also carried out during charge and discharge cycles, as well as communication modes, from which the maximum allowable data transfer rate is determined. The approach presented here can be generalized to many other smart grid IoT devices.

2.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062454

RESUMO

Unpressurized aircraft circuits facilitate the initiation of electrical discharges in wiring systems, with consequent damage to related insulation materials and safety hazards, that can and have already caused severe incidents and accidents. Specific sensors and solutions must be developed to detect these types of faults at a very incipient stage, before further damage occurs. Electrical discharges in air generate the corona effect, which is characterized by emissions of bluish light, which are found in the ultraviolet (UV) and visible spectra. However, due to sunlight interference, the corona effect is very difficult to detect at the very initial stage, so the use of solar-blind sensors can be a possible solution. This work analyzes the feasibility of using inexpensive non-invasive solar-blind sensors in a range of pressures compatible with aircraft environments to detect the electrical discharges at a very incipient stage. Their behavior and sensitivity compared with other alternatives, i.e., an antenna sensor and a CMOS imaging sensor, is also assessed. Experimental results presented in this paper show that the analyzed solar-blind sensors can be applied for the on-line detection of electrical discharges in unpressurized aircraft environments at the very initial stage, thus facilitating and enabling the application of predictive maintenance strategies. They also offer the possibility to be combined with existing electrical protections to expand their capabilities and improve their sensitivity to detect very early discharges, thus allowing the timely identification of their occurrence.


Assuntos
Aeronaves , Luz Solar , Eletricidade
3.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35271003

RESUMO

Aeronautical industry is evolving towards more electric aircrafts (MEA), which will require much more electrical power compared to conventional models. To satisfy this increasing power demand and stringent weight requirements, distribution voltages must be raised, which jointly with the low-pressure environment and high operating frequencies increase the risk of electrical discharges occurrence. Therefore, it is important to generate data to design insulation systems for these demanding applications. To this end, in this work a sphere-to-plane electrode configuration is tested for several sphere geometries (diameters ranging from 2 mm to 10 mm), frequencies of 50 Hz, 400 Hz and 800 Hz and pressures in the 20-100 kPa range, to cover most aircraft applications. The corona extinction voltage is experimentally determined by using a gas-filled tube solar blind ultraviolet (UV) sensor. In addition, a CMOS imaging sensor is used to locate the discharge points. Next, to gain further insight to the discharge conditions, the electric field strength is calculated using finite element method (FEM) simulations and fitted to equations based on Peek's law. The results presented in this paper could be especially valuable to design aircraft electrical insulations as well as for high-voltage hardware manufacturers, since the results allow determining the electric field values at which the components can operate free of surface discharges for a wide altitude range.

4.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770386

RESUMO

This paper proposes an approach to estimate the state of health of DC-DC converters that feed the electrical system of an electric vehicle. They have an important role in providing a smooth and rectified DC voltage to the electric machine. Thus, it is important to diagnose the actual status and predict the future performance of the converter and specifically of the electrolytic capacitors, in order to avoid malfunctioning and failures, since it is known they have the highest failure rates among power converter components. To this end, accelerated aging tests of the electrolytic capacitors are performed by applying an electrical overstress. The gathered data are used to train a CNN-LSTM model that is capable of predicting the future values of the capacitance and the equivalent series resistance (ESR) of the electrolytic capacitor. This model can be used to estimate the remaining useful life of the device, thus, increasing the reliability of the system and ensuring an adequate operating condition of the electric motor.


Assuntos
Eletricidade , Capacitância Elétrica , Prognóstico , Reprodutibilidade dos Testes
5.
Sensors (Basel) ; 21(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34770695

RESUMO

Dynamic thermal line rating (DTLR) allows us to take advantage of the maximum transmission capacity of power lines, which is an imperious need for future smart grids. This paper proposes a real-time method to determine the DTLR rating of aluminum conductor steel-reinforced (ACSR) conductors. The proposed approach requires a thermal model of the line to determine the real-time values of the solar radiation and the ambient temperature, which can be obtained from weather stations placed near the analyzed conductors as well as the temperature and the current of the conductor, which can be measured directly with a Smartconductor and can be transmitted wirelessly to a nearby gateway. Real-time weather and overhead line data monitoring and the calculation of DTLR ratings based on models of the power line is a practical smart grid application. Since it is known that the wind speed exhibits important fluctuations, even in nearby areas, and since it plays a key role in determining the DTLR, it is essential to accurately estimate this parameter at the conductor's location. This paper presents a method to estimate the wind speed and the DTLR rating of the analyzed conductor. Experimental tests have been conducted to validate the accuracy of the proposed approach using ACSR conductors.

6.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640996

RESUMO

More electric aircrafts (MEAs) are paving the path to all electric aircrafts (AEAs), which make a much more intensive use of electrical power than conventional aircrafts. Due to the strict weight requirements, both MEA and AEA systems require to increase the distribution voltage in order to limit the required electrical current. Under this paradigm new issues arise, in part due to the voltage rise and in part because of the harsh environments found in aircrafts systems, especially those related to low pressure and high-electric frequency operation. Increased voltage levels, high-operating frequencies, low-pressure environments and reduced distances between wires pose insulation systems at risk, so partial discharges (PDs) and electrical breakdown are more likely to occur. This paper performs an experimental analysis of the effect of low-pressure environments and high-operating frequencies on the visual corona voltage, since corona discharges occurrence is directly related to arc tracking and insulation degradation in wiring systems. To this end, a rod-to-plane electrode configuration is tested in the 20-100 kPa and 50-1000 Hz ranges, these ranges cover most aircraft applications, so that the corona extinction voltage is experimentally determined by using a low-cost high-resolution CMOS imaging sensor which is sensitive to the visible and near ultraviolet (UV) spectra. The imaging sensor locates the discharge points and the intensity of the discharge, offering simplicity and low-cost measurements with high sensitivity. Moreover, to assess the performance of such sensor, the discharges are also acquired by analyzing the leakage current using an inexpensive resistor and a fast oscilloscope. The experimental data presented in this paper can be useful in designing insulation systems for MEA and AEA applications.

7.
Sensors (Basel) ; 21(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072163

RESUMO

Connections are critical elements in power systems, exhibiting higher failure probability. Power connectors are considered secondary simple devices in power systems despite their key role, since a failure in one such element can lead to major issues. Thus, it is of vital interest to develop predictive maintenance approaches to minimize these issues. This paper proposes an on-line method to determine the remaining useful life (RUL) of power connectors. It is based on a simple and accurate model of the degradation with time of the electrical resistance of the connector, which only has two parameters, whose values are identified from on-line acquired data (voltage drop across the connector, electric current and temperature). The accuracy of the model presented in this paper is compared with the widely applied autoregressive integrated moving average model (ARIMA), showing enhanced performance. Next, a criterion to determine the RUL is proposed, which is based on the inflection point of the expression describing the electrical resistance degradation. This strategy allows determination of when the connector must be replaced, thus easing predictive maintenance tasks. Experimental results from seven connectors show the potential and viability of the suggested method, which can be applied to many other devices.

8.
Sensors (Basel) ; 20(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940780

RESUMO

Visual corona tests have been broadly applied for identifying the critical corona points of diverse high-voltage devices, although other approaches based on partial discharge or radio interference voltage measurements are also widely applied to detect corona activity. Nevertheless, these two techniques must be applied in screened laboratories, which are scarce and expensive, require sophisticated instrumentation, and typically do not allow location of the discharge points. This paper describes the detection of the visual corona and location of the critical corona points of a sphere-plane gap configurations under different pressure conditions ranging from 100 to 20 kPa, covering the pressures typically found in aeronautic environments. The corona detection is made with a low-cost CMOS imaging sensor from both the visible and ultraviolet (UV) spectrum, which allows detection of the discharge points and their locations, thus significantly reducing the complexity and costs of the instrumentation required while preserving the sensitivity and accuracy of the measurements. The approach proposed in this paper can be applied in aerospace applications to prevent the arc tracking phenomenon, which can lead to catastrophic consequences since there is not a clear protection solution, due to the low levels of leakage current involved in the pre-arc phenomenon.

9.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339377

RESUMO

Insulation faults in high-voltage applications often generate partial discharges (PDs) accompanied by corona activity, optical radiation mainly in the ultraviolet (UV) and visible bands. Recent developments in low-cost, small-size, and high-resolution visible imaging sensors, which are also partially sensitive to the UV spectral region, are gaining attention due to their many industrial applications. This paper proposes a method for early PD detection by using digital imaging sensors, which allows the severity of insulation faults to be assessed. The electrical power dissipated by the PDs is correlated to the energy of the acquired visible images, and thus, the severity of insulation faults is determined from the energy of the corona effect. A criterion to quantify the severity of insulation faults based on the energy of the corona images is proposed. To this end, the point-to-plane gap configuration is analyzed in a low-pressure chamber, where digital image photographs of the PDs are taken and evaluated under different pressure conditions ranging from 10 to 100 kPa, which cover the typical pressure range of aeronautic applications. The use of digital imaging sensors also allows an early detection, location and quantification of the PD activity, and thus assessing the severity of insulation faults to perform predictive maintenance tasks, while enabling the cost and complexity of the instrumentation to be reduced. Although the approach proposed in this paper has been applied to detect PDs in aeronautic applications, it can be applied to many other high-voltage applications susceptible of PD occurrence.

10.
Sensors (Basel) ; 20(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188101

RESUMO

Next generation aircrafts will use more electrical power to reduce weight, fuel consumption, system complexity and greenhouse gas emissions. However, new failure modes and challenges arise related to the required voltage increase and consequent rise of electrical stress on wiring insulation materials, thus increasing the risk of electrical arc appearance. This work performs a critical and comprehensive review concerning arc tracking effects in wiring insulation systems, underlying mechanisms, role of materials and possible mitigation strategies, with a special focus on aircraft applications. To this end an evaluation of the scientific and technological state of the art is carried out from the analysis of theses, research articles, technical reports, international standards and white papers. This review paper also reports the limitations of existing insulation materials, standard test methods and mitigation approaches, while identifying the research needs to comply with the future demands of the aircraft industry.

11.
Polymers (Basel) ; 15(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765571

RESUMO

With the increasing electrification of the transportation and mobility sectors, polymer insulation materials are inevitably exposed to harsher environments, including exposure to contamination, wide temperature ranges, operation at higher voltages and switching frequencies, and low-pressure environments. This paper reviews the tests to characterize the polymeric materials used in insulation systems for electric mobility applications, focusing on resistance to tracking. This paper also reports on the limitations of existing standard test methods and identifies the challenges and research needs to meet the increasing demands of the electric mobility industry. To this end, an evaluation of the scientific and technological state of the art is carried out through the analysis of theses, research articles, technical reports, manufacturers' datasheets, international standards, and white papers.

12.
Materials (Basel) ; 15(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36079523

RESUMO

Dynamic line rating (DLR) is a method that focuses on dynamically determining the maximum allowable current of power lines, while ensuring they operate within safe limits. DLR needs to monitor the temperature and current of the line in real-time, as well as the weather variables in the surroundings of the power line. DLR approaches also require determining the AC resistance of the power line conductors, which is a key parameter that enables it to determine Joule and core losses. This paper presents an approach for an on-line alternating current (AC) resistance estimation of aluminum conductor steel-reinforced (ACSR) conductors to determine the DLR capability of such conductors from real-time conductor and meteorological parameter measurements. For this purpose, conductors with one, two and three layers of aluminum strands are analyzed in detail. Based on the experimental results presented in this paper, two possible approaches are proposed.

13.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268904

RESUMO

Compared to their predecessors, the next generations of aircrafts will be more electrified, require more electrical power and operate at higher voltage levels to meet strict weight and volume constraints. The combined effect of low-pressure environments, increased voltage levels and compact designs intensifies the risks of premature insulation degradation due to electrical discharge activity. This paper studies the resistance to surface discharges of PTFE (polytetrafluoroethylene) and ETFE (ethylene tetrafluoroethylene), two insulation materials widely used in today's aircraft wiring systems due to their outstanding properties, such as a wide temperature operation range and a high dielectric strength. The study is carried out in a low-pressure chamber, which was pressurized within the pressure range of 10-100 kPa that includes most aircraft applications. There is a compelling need for experimental data to assess the resistance of insulation materials to surface discharges at a very early stage as a function of the environmental pressure. Data on resistance to surface discharges in low-pressure environments for aeronautical applications are lacking, while most standards for insulation systems are based on tests under standard pressure conditions. The results provided in this work can be useful to design wiring systems for future more electric aircrafts, as well as to design fault detection systems for an early detection and identification of faults related to surface discharges. Therefore, the data and analysis included in this paper could be of great interest to design and develop insulation systems for wiring systems and standard assessment methods, as well as to design fault detection strategies for the early detection and identification of surface discharges for future generations of more electric aircrafts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA