Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(12): 6710-6718, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36872864

RESUMO

Previous characterizations of diactinide endohedral metallofullerenes (EMFs) Th2@C80 and U2@C80 have shown that although the two Th3+ ions form a strong covalent bond within the carbon cage, the interaction between the U3+ ions is weaker and described as an "unwilling" bond. To evaluate the feasibility of covalent U-U bonds, which are neglected in classical actinide chemistry, we have first investigated the formation of smaller diuranium EMFs by laser ablation using mass spectrometric detection of dimetallic U2@C2n species with 2n ≥ 50. DFT, CASPT2 calculations, and MD simulations for several fullerenes of different sizes and symmetries showed that thanks to the formation of strong U(5f3)-U(5f3) triple bonds, two U3+ ions can be incarcerated inside the fullerene. The formation of U-U bonds competes with U-cage interactions that tend to separate the U ions, hindering the observation of short U-U distances in the crystalline structures of diuranium endofullerenes as in U2@C80. Smaller cages like C60 exhibit the two interactions, and a strong triple U-U bond with an effective bond order higher than 2 is observed. Although 5f-5f interactions are responsible for the covalent interactions at distances close to 2.5 Å, overlap between 7s6d orbitals is still detected above 4 Å. In general, metal ions within fullerenes should be regarded as templates in cage formation, not as statistically confined units that have little chance of being observed.

2.
J Am Chem Soc ; 143(16): 6037-6042, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33821637

RESUMO

The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.

3.
Angew Chem Int Ed Engl ; 60(48): 25269-25273, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34559455

RESUMO

New multicomponent reactions involving an isocyanide, terminal or internal alkynes, and endohedral metallofullerene (EMF) Lu3 N@C80 yield metallofulleroids which are characterized by mass-spectrometry, HPLC, and multiple 1D and 2D NMR techniques. Single crystal studies revealed one ketenimine metallofulleroid has ordered Lu3 N cluster which is unusual for EMF monoadducts. Computational analysis, based on crystallographic data, confirm that the endohedral cluster motion is controlled by the position of the exohedral organic appendants. Our findings provide a new functionalization reaction for EMFs, and a potential facile approach to freeze the endohedral cluster motion at relatively high temperatures.

4.
J Phys Chem A ; 122(8): 2288-2296, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29436831

RESUMO

Halogenation has been one of the most used strategies to explore the reactivity of empty carbon cages. In particular, the higher reactivity of non-IPR fullerenes, i.e., those fullerenes that do not satisfy the isolated pentagon rule (IPR), has been used to functionalize and capture these less stable fullerenes. Here, we have explored the stability of the non-IPR isomer C72(11188) with C2v symmetry, which is topologically linked to the only IPR isomer of C70, as well as its reactivity to chlorination. DFT calculations and Car-Parrinello molecular dynamics simulations suggest that chlorination takes places initially in nonspecific sites, once carbon cages are formed. When the temperature in the arc reactor decreases sufficiently, Cl atoms are trapped on the fullerene surface, migrating from not-so-favored positions to reach the most favored sites in the pentalene. We have also discussed why cage C2v-C72(11188) is found to take four chlorines, whereas cage C1-C74(14049) is observed to capture 10 of them, even though these two fullerenes are closely related by a simple C2 insertion.

5.
J Mater Chem C Mater ; 8(20): 6813-6819, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33777397

RESUMO

In this work, two new C70 isomers, α and ß bis(2-(thiophen-2-yl)ethyl)-C70-fullerene mono-adducts (DTC70), were synthesized, characterized and used as electron transporting materials (ETMs) in perovskite solar cells (PSCs). Our results show that the α isomer improves both the J sc and FF values of the devices, when compared to the results for the ß-isomer and to those for phenyl-C70-butyric acid methyl ester (PC71BM), used as control. Devices based on α-DTC70 achieved a power conversion efficiency (PCE) of 15.9%, which is higher than that observed with PC71BM (15.1%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA