Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633260

RESUMO

Huntington's disease (HD) results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mutant huntingtin (mHTT) to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by JNK kinases and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNK kinases. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem HD patients. Collectively, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in HD.

2.
J Neurosci ; 41(45): 9431-9451, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607969

RESUMO

Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, ß, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1ß, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons.SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.


Assuntos
Transporte Axonal/efeitos dos fármacos , Demência Frontotemporal , Neurônios/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas tau/farmacologia , Animais , Células Cultivadas , Decapodiformes , Feminino , Hipocampo , Humanos , Masculino , Mutação , Neurônios/efeitos dos fármacos , Ratos , Proteínas tau/genética
3.
Neurobiol Dis ; 105: 273-282, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28411118

RESUMO

Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.


Assuntos
Transporte Axonal/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais/fisiologia
4.
Hum Mol Genet ; 24(18): 5285-98, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123489

RESUMO

Cumulative evidence indicates that the onset and severity of Huntington's disease (HD) symptoms correlate with connectivity deficits involving specific neuronal populations within cortical and basal ganglia circuits. Brain imaging studies and pathological reports further associated these deficits with alterations in cerebral white matter structure and axonal pathology. However, whether axonopathy represents an early pathogenic event or an epiphenomenon in HD remains unknown, nor is clear the identity of specific neuronal populations affected. To directly evaluate early axonal abnormalities in the context of HD in vivo, we bred transgenic YFP(J16) with R6/2 mice, a widely used HD model. Diffusion tensor imaging and fluorescence microscopy studies revealed a marked degeneration of callosal axons long before the onset of motor symptoms. Accordingly, a significant fraction of YFP-positive cortical neurons in YFP(J16) mice cortex were identified as callosal projection neurons. Callosal axon pathology progressively worsened with age and was influenced by polyglutamine tract length in mutant huntingtin (mhtt). Degenerating axons were dissociated from microscopically visible mhtt aggregates and did not result from loss of cortical neurons. Interestingly, other axonal populations were mildly or not affected, suggesting differential vulnerability to mhtt toxicity. Validating these results, increased vulnerability of callosal axons was documented in the brains of HD patients. Observations here provide a structural basis for the alterations in cerebral white matter structure widely reported in HD patients. Collectively, our data demonstrate a dying-back pattern of degeneration for cortical projection neurons affected in HD, suggesting that axons represent an early and potentially critical target for mhtt toxicity.


Assuntos
Axônios/patologia , Encéfalo/patologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Idoso , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Expressão Gênica , Genes Reporter , Humanos , Doença de Huntington/diagnóstico , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Pessoa de Meia-Idade , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Índice de Gravidade de Doença
5.
Brain ; 135(Pt 7): 2058-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22719003

RESUMO

The progressive loss of the nigrostriatal pathway is a distinguishing feature of Parkinson's disease. As terminal field loss seems to precede cell body loss, we tested whether alterations of axonal transport motor proteins would be early features in Parkinson's disease. There was a decline in axonal transport motor proteins in sporadic Parkinson's disease that preceded other well-known nigral cell-related pathology such as phenotypic downregulation of dopamine. Reductions in conventional kinesin levels precede the alterations in dopaminergic phenotypic markers (tyrosine hydroxylase) in the early stages of Parkinson's disease. This reduction was significantly greater in nigral neurons containing α-synuclein inclusions. Unlike conventional kinesin, reductions in the levels of the cytoplasmic dynein light chain Tctex type 3 subunit were only observed at late Parkinson's disease stages. Reductions in levels of conventional kinesin and cytoplasmic dynein subunits were recapitulated in a rat genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A30P). Together, our data suggest that α-synuclein aggregation is a key feature associated with reductions of axonal transport motor proteins in Parkinson's disease and support the hypothesis that dopaminergic neurodegeneration following a 'dying-back' pattern involving axonal transport disruption.


Assuntos
Transporte Axonal/fisiologia , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Transtornos Parkinsonianos/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
6.
J Neurosci ; 31(27): 9858-68, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734277

RESUMO

Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2-18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.


Assuntos
Transporte Axonal/genética , Axônios/patologia , Encéfalo/patologia , Cinesinas/metabolismo , Fosfotransferases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Análise de Variância , Animais , Transporte Axonal/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Decapodiformes , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Técnicas In Vitro , Cinesinas/genética , Modelos Biológicos , Mutagênese/genética , Fragmentos de Peptídeos/metabolismo , Isótopos de Fósforo/farmacocinética , Fosfotransferases/genética , Proteínas Proto-Oncogênicas c-jun/farmacocinética , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
7.
Front Mol Neurosci ; 14: 647054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815057

RESUMO

Over four decades ago, in vitro experiments showed that tau protein interacts with and stabilizes microtubules in a phosphorylation-dependent manner. This observation fueled the widespread hypotheses that these properties extend to living neurons and that reduced stability of microtubules represents a major disease-driving event induced by pathological forms of tau in Alzheimer's disease and other tauopathies. Accordingly, most research efforts to date have addressed this protein as a substrate, focusing on evaluating how specific mutations, phosphorylation, and other post-translational modifications impact its microtubule-binding and stabilizing properties. In contrast, fewer efforts were made to illuminate potential mechanisms linking physiological and disease-related forms of tau to the normal and pathological regulation of kinases and phosphatases. Here, we discuss published work indicating that, through interactions with various kinases and phosphatases, tau may normally act as a scaffolding protein to regulate phosphorylation-based signaling pathways. Expanding on this concept, we also review experimental evidence linking disease-related tau species to the misregulation of these pathways. Collectively, the available evidence supports the participation of tau in multiple cellular processes sustaining neuronal and glial function through various mechanisms involving the scaffolding and regulation of selected kinases and phosphatases at discrete subcellular compartments. The notion that the repertoire of tau functions includes a role as a signaling hub should widen our interpretation of experimental results and increase our understanding of tau biology in normal and disease conditions.

8.
J Neurosci ; 29(41): 12776-86, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19828789

RESUMO

Adult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT). Accordingly, deficits in AT have been documented in most AONDs, suggesting a common defect acquired through different pathogenic pathways. These observations suggest that many AONDs can be categorized as dysferopathies, diseases in which alterations in AT represent a critical component in pathogenesis. Topics here address various molecular mechanisms underlying alterations in AT in several AONDs. Illumination of such mechanisms provides a framework for the development of novel therapeutic strategies aimed to prevent axonal and synaptic dysfunction in several major AONDs.


Assuntos
Transporte Axonal/fisiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/genética , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteínas tau/metabolismo
9.
J Neurochem ; 113(5): 1073-91, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20236390

RESUMO

Abnormal expansion of a polyglutamine tract in huntingtin (Htt) protein results in Huntington's disease (HD), an autosomal dominant neurodegenerative disorder involving progressive loss of motor and cognitive function. Contrasting with the ubiquitous tissue expression of polyglutamine-expanded Htt, HD pathology is characterized by the increased vulnerability of specific neuronal populations within the striatum and the cerebral cortex. Morphological, biochemical, and functional characteristics of neurons affected in HD that might render these cells more vulnerable to the toxic effects of polyglutamine-Htt are covered in this review. The differential vulnerability of neurons observed in HD is discussed in the context of various major pathogenic mechanisms proposed to date, and in line with evidence showing a 'dying-back' pattern of degeneration in affected neuronal populations.


Assuntos
Doença de Huntington/patologia , Neurônios/patologia , Transporte Axonal/fisiologia , Encéfalo/patologia , Química Encefálica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Humanos , Proteína Huntingtina , Doença de Huntington/etiologia , Doença de Huntington/genética , Mitocôndrias/patologia , Mutação/fisiologia , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/toxicidade , Neurônios/classificação , Proteínas Nucleares/genética , Proteínas Nucleares/toxicidade , Transdução de Sinais
10.
Mol Neurobiol ; 56(11): 7708-7718, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31104296

RESUMO

Recent evidence indicates that disruption of epidermal growth factor (EGF) signaling by mutant huntingtin (polyQ-htt) may contribute to the onset of behavioral deficits observed in Huntington's disease (HD) through a variety of mechanisms, including cerebrovascular dysfunction. Yet, whether EGF signaling modulates the development of HD pathology and the associated behavioral impairments remain unclear. To gain insight on this issue, we used the R6/2 mouse model of HD to assess the impact of chronic EGF treatment on behavior, and cerebrovascular and cortical neuronal functions. We found that bi-weekly treatment with a low dose of EGF (300 µg/kg, i.p.) for 6 weeks was sufficient to effectively improve motor behavior in R6/2 mice and diminish mortality, compared to vehicle-treated littermates. These beneficial effects of EGF treatment were dissociated from changes in cerebrovascular leakiness, a result that was surprising given that EGF ameliorates this deficit in other neurodegenerative diseases. Rather, the beneficial effect of EGF on R6/2 mice behavior was concomitant with a marked amelioration of cortical GABAergic function. As GABAergic transmission in cortical circuits is disrupted in HD, these novel data suggest a potential mechanistic link between deficits in EGF signaling and GABAergic dysfunction in the progression of HD.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Neurônios GABAérgicos/patologia , Doença de Huntington/fisiopatologia , Atividade Motora/efeitos dos fármacos , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/uso terapêutico , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Doença de Huntington/tratamento farmacológico , Masculino , Transmissão Sináptica/efeitos dos fármacos
11.
Neuron ; 40(1): 41-52, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14527432

RESUMO

Huntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates.


Assuntos
Transporte Axonal/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores Androgênicos/genética , Animais , Tamanho Celular/fisiologia , Decapodiformes , Humanos , Proteína Huntingtina , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/química , Inibição Neural/fisiologia , Proteínas Nucleares/química , Peptídeos/química , Peptídeos/genética , Receptores Androgênicos/química , Células Tumorais Cultivadas
12.
J Neurosci ; 27(26): 7011-20, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17596450

RESUMO

Presenilins (PS) play a central role in gamma-secretase-mediated processing of beta-amyloid precursor protein (APP) and numerous type I transmembrane proteins. Expression of mutant PS1 variants causes familial forms of Alzheimer's disease (FAD). In cultured mammalian cells that express FAD-linked PS1 variants, the intracellular trafficking of several type 1 membrane proteins is altered. We now report that the anterograde fast axonal transport (FAT) of APP and Trk receptors is impaired in the sciatic nerves of transgenic mice expressing two independent FAD-linked PS1 variants. Furthermore, FAD-linked PS1 mice exhibit a significant increase in phosphorylation of the cytoskeletal proteins tau and neurofilaments in the spinal cord. Reductions in FAT and phosphorylation abnormalities correlated with motor neuron functional deficits. Together, our data suggests that defects in anterograde FAT may underlie FAD-linked PS1-mediated neurodegeneration through a mechanism involving impairments in neurotrophin signaling and synaptic dysfunction.


Assuntos
Doença dos Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Presenilina-1/metabolismo , Doenças da Medula Espinal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Transporte Axonal/fisiologia , Predisposição Genética para Doença/genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Presenilina-1/genética , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/fisiopatologia
13.
Mol Biol Cell ; 28(8): 1079-1087, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28251926

RESUMO

Microtubule-based axonal transport is tightly regulated by numerous pathways, ensuring appropriate delivery of specific organelle cargoes to selected subcellular domains. Highlighting the importance of this process, pathological evidence has linked alterations in these pathways to the pathogenesis of several neurodegenerative diseases. An important regulator of this system, the microtubule-associated protein Tau, has been shown to participate in signaling cascades, modulate microtubule dynamics, and preferentially inhibit kinesin-1 motility. However, the cellular means of regulating Tau's inhibition of kinesin-1 motility remains unknown. Tau is subject to various posttranslational modifications, including phosphorylation, but whether phosphorylation regulates Tau on the microtubule surface has not been addressed. It has been shown that tyrosine 18 phosphorylated Tau regulates inhibition of axonal transport in the disease state. Tyrosine 18 is both a disease- and nondisease-state modification and is therefore an attractive starting point for understanding control of Tau's inhibition of kinesin-1 motility. We show that pseudophosphorylation of tyrosine 18 reduces 3RS-Tau's inhibition of kinesin-1 motility. In addition, we show that introduction of negative charge at tyrosine 18 shifts Tau's previously described static-dynamic state binding equilibrium toward the dynamic state. We also present the first evidence of Tau's static-dynamic state equilibrium under physiological conditions.


Assuntos
Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Proteínas tau/metabolismo , Transporte Axonal , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Tirosina/metabolismo
14.
PLoS One ; 12(12): e0188340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261664

RESUMO

Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Caseína Quinase II/metabolismo , Proteínas Priônicas/fisiologia , Animais , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Cinesinas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fosforilação
15.
J Neurosci ; 25(9): 2386-95, 2005 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-15745965

RESUMO

The sequential enzymatic actions of beta-APP cleaving enzyme 1 (BACE1), presenilins (PS), and other proteins of the gamma-secretase complex liberate beta-amyloid (Abeta) peptides from larger integral membrane proteins, termed beta-amyloid precursor proteins (APPs). Relatively little is known about the normal function(s) of APP or the neuronal compartment(s) in which APP undergoes proteolytic processing. Recent studies have been interpreted as consistent with the idea that APP serves as a kinesin-1 cargo receptor and that PS and BACE1 are associated with the APP-resident membranous cargos that undergo rapid axonal transport. In this report, derived from a collaboration among several independent laboratories, we examined the potential associations of APP and kinesin-1 using glutathione S-transferase pull-down and coimmunoprecipitation assays. In addition, we assessed the trafficking of membrane proteins in the sciatic nerves of transgenic mice with heterozygous or homozygous deletions of APP. In contrast to previous reports, we were unable to find evidence for direct interactions between APP and kinesin-1. Furthermore, the transport of kinesin-1 and tyrosine kinase receptors, previously reported to require APP, was unchanged in axons of APP-deficient mice. Finally, we show that two components of the APP proteolytic machinery, i.e., PS1 and BACE1, are not cotransported with APP in the sciatic nerves of mice. These findings suggest that the hypothesis that APP serves as a kinesin-1 receptor and that the proteolytic processing machinery responsible for generating Abeta is transported in the same vesicular compartment in axons of peripheral nerves requires revision.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Axônios/fisiologia , Cinesinas/fisiologia , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/deficiência , Animais , Ácido Aspártico Endopeptidases , Western Blotting/métodos , Encéfalo/citologia , Encéfalo/metabolismo , Clonagem Molecular/métodos , Endopeptidases/deficiência , Expressão Gênica/fisiologia , Glutationa Transferase/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Humanos , Imuno-Histoquímica , Imunoprecipitação/métodos , Cinesinas/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1 , Ligação Proteica , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Nervo Isquiático/citologia , Neuropatia Ciática/metabolismo
16.
J Parkinsons Dis ; 6(1): 77-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003787

RESUMO

BACKGROUND: Activity-dependent neuroprotective protein (ADNP) is essential for brain formation and neuronal survival. It is possible that intracellular alpha-synuclein (α-syn) inclusions may be due to, or may cause, down-regulation of ADNP expression. OBJECTIVE: This study were to determine whether ADNP protein levels are altered in nigral dopaminergic neurons, establish whether ADNP alterations are associated with α-syn accumulation, and evaluate potential correlations between levels of ADNP expression and axonal transport motor proteins in sporadic and experimental Parkinson's disease (PD). METHODS: Twenty human brains from PD (n = 12) and age-matched controls (n = 8) and sixteen rat brains received α-synuclein gene (n = 8) or empty vector (n = 8) were analyzed using immunohistochemistry. The number of ADNP labeled nigral neurons were estimated with stereology and the levels of ADNP were determined using densitometry. RESULTS: Compared to age-matched controls, a marked reduction in ADNP protein levels was observed in neuromelanin-containing nigral neurons of PD. Reduced ADNP levels did no relate to the progression of PD symptoms, but instead occurred at early PD stages, before reductions in tyrosine hydroxylase could be detected. Reductions in ADNP were also positively correlated with alterations in axonal transport motor protein. Reductions in ADNP levels were recapitulated in a rat model of PD based on viral over-expression of human wild-type α-synuclein, suggesting that ADNP reductions in PD are a direct result of α-synuclein overexpression. CONCLUSION: These findings demonstrate that the down-regulation of protein ADNP is an early pathological alteration and may contribute to dopaminergic neurodegeneration in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Animais , Autopsia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Feminino , Proteínas de Homeodomínio/análise , Humanos , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/análise , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Ratos , alfa-Sinucleína/metabolismo
17.
Exp Neurol ; 246: 44-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22721767

RESUMO

Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Transporte Axonal/fisiologia , Axônios/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Transdução de Sinais/fisiologia , Animais , Axônios/metabolismo , Humanos
18.
PLoS One ; 8(6): e65235, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776455

RESUMO

Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Transporte Axonal/efeitos dos fármacos , Degeneração Neural/patologia , Superóxido Dismutase/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Transporte Axonal/fisiologia , Decapodiformes , Imuno-Histoquímica , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Espectrometria de Massas , Camundongos , Mutação/genética , Fosforilação , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
19.
Nat Neurosci ; 12(7): 864-71, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525941

RESUMO

Selected vulnerability of neurons in Huntington's disease suggests that alterations occur in a cellular process that is particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal models of Huntington's disease (mouse and squid), but the molecular basis of this effect remains unknown. We found that polyQ-Htt inhibited FAT through a mechanism involving activation of axonal cJun N-terminal kinase (JNK). Accordingly, we observed increased activation of JNK in vivo in cellular and mouse models of Huntington's disease. Additional experiments indicated that the effects of polyQ-Htt on FAT were mediated by neuron-specific JNK3 and not by ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in Huntington's disease. Mass spectrometry identified a residue in the kinesin-1 motor domain that was phosphorylated by JNK3 and this modification reduced kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provide a molecular basis for polyQ-Htt-induced inhibition of FAT.


Assuntos
Transporte Axonal/fisiologia , Cinesinas/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Linhagem Celular , Decapodiformes , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Cinesinas/genética , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Mutação , Neurônios/fisiologia , Peptídeos/genética , Fosforilação , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA