Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 15: 709917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690699

RESUMO

In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.

2.
Toxins (Basel) ; 13(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800135

RESUMO

Current strategies for glioma treatment are only partly effective because of the poor selectivity for tumoral cells. Hence, the necessity to identify novel approaches is urgent. Recent studies highlighted the effectiveness of the bacterial protein cytotoxic necrotizing factor 1 (CNF1) in reducing tumoral mass, increasing survival of glioma-bearing mice and protecting peritumoral neural tissue from dysfunction. However, native CNF1 needs to be delivered into the brain, because of its incapacity to cross the blood-brain barrier (BBB) per se, thus hampering its clinical translation. To allow a non-invasive administration of CNF1, we here developed a chimeric protein (CTX-CNF1) conjugating CNF1 with chlorotoxin (CTX), a peptide already employed in clinics due to its ability of passing the BBB and selectively binding glioma cells. After systemic administration, we found that CTX-CNF1 is able to target glioma cells and significantly prolong survival of glioma-bearing mice. Our data point out the potentiality of CTX-CNF1 as a novel effective tool to treat gliomas.


Assuntos
Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Proteínas de Escherichia coli/farmacologia , Glioma/tratamento farmacológico , Venenos de Escorpião/farmacologia , Animais , Antineoplásicos/metabolismo , Toxinas Bacterianas/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Injeções Intravenosas , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/farmacologia , Venenos de Escorpião/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA