Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hepatology ; 76(5): 1360-1375, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35278227

RESUMO

BACKGROUND AND AIMS: In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS: Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS: PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.


Assuntos
Hepatopatias , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Miofibroblastos/metabolismo , Meios de Cultivo Condicionados/metabolismo , Hibridização in Situ Fluorescente , Ligantes , Cirrose Hepática/patologia , Fígado/patologia , Fibroblastos/patologia , Hepatopatias/patologia , RNA , Células Estreladas do Fígado/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555812

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapies that inhibit PARP proteins which are involved in a variety of cell functions. PARPi may act as modulators of angiogenesis; however, the relationship between PARPi and the vasculogenic mimicry (VM) in breast cancer remains unclear. To determine whether PARPi regulate the vascular channel formation, we assessed whether the treatment with olaparib, talazoparib and veliparib inhibits the vascular channel formation by breast cancer cell lines. Here, we found that PARPi act as potent inhibitors of the VM formation in triple negative breast cancer cells, independently of the BRCA status. Mechanistically, we find that PARPi trigger and inhibit the NF-κB signaling, leading to the inhibition of the VM. We further show that PARPi decrease the expression of the angiogenic factor PTX3. Moreover, PTX3 rescued the PARPi-inhibited VM inhibition. In conclusion, our results indicate that PARPi, by targeting the VM, may provide a new therapeutic approach for triple negative breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , NF-kappa B , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
3.
Clin Infect Dis ; 71(10): e549-e560, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32166319

RESUMO

BACKGROUND: Although some integrase strand transfer inhibitors (INSTIs) promote peripheral and central adipose tissue/weight gain in people with human immunodeficiency virus (PHIV), the underlying mechanism has not been identified. Here, we used human and simian models to assess the impact of INSTIs on adipose tissue phenotype and function. METHODS: Adipocyte size and fibrosis were determined in biopsies of subcutaneous and visceral adipose tissue (SCAT and VAT, respectively) from 14 noninfected macaques and 19 PHIV treated or not treated with an INSTI. Fibrosis, adipogenesis, oxidative stress, mitochondrial function, and insulin sensitivity were assessed in human proliferating or adipocyte-differentiated adipose stem cells after long-term exposure to dolutegravir or raltegravir. RESULTS: We observed elevated fibrosis, adipocyte size, and adipogenic marker expression in SCAT and VAT from INSTI-treated noninfected macaques. Adiponectin expression was low in SCAT. Accordingly, SCAT and VAT samples from INSTI-exposed patients displayed higher levels of fibrosis than those from nonexposed patients. In vitro, dolutegravir and, to a lesser extent, raltegravir were associated with greater extracellular matrix production and lipid accumulation in adipose stem cells and/or adipocytes as observed in vivo. Despite the INSTIs' proadipogenic and prolipogenic effects, these drugs promoted oxidative stress, mitochondrial dysfunction, and insulin resistance. CONCLUSIONS: Dolutegravir and raltegravir can directly impact adipocytes and adipose tissue. These INSTIs induced adipogenesis, lipogenesis, oxidative stress, fibrosis, and insulin resistance. The present study is the first to shed light on the fat modifications observed in INSTI-treated PHIV.


Assuntos
Infecções por HIV , Inibidores de Integrase de HIV , Resistência à Insulina , Adipócitos , Tecido Adiposo , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Inibidores de Integrase/uso terapêutico , Oxazinas , Piperazinas , Piridonas , Raltegravir Potássico/uso terapêutico
4.
Nephrol Dial Transplant ; 29(11): 2136-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24042020

RESUMO

BACKGROUND: The epithelial response to injury is stereotypical and reminiscent of epithelial-to-mesenchymal transitions (EMTs), such as those observed during embryogenesis and tumour metastasis. In the context of solid organ transplantation, EMT-like features are often acquired by epithelial cells and are predictive of graft fibrosis. Here, we studied the possible involvement of several major transcriptional regulators, including snail1, phospho-Smad 2/3 and zeb1, in EMT induction in human renal grafts. METHODS: We used immunohistochemistry to detect the presence of these EMT transcriptional regulators along with that of two validated EMT markers (intra-cytoplasmic translocation of ß-catenin, de novo expression of vimentin), in 103 renal graft biopsy samples taken for routine surveillance or for a clinical indication. RESULTS: We observed the nuclear accumulation of snail1 and phospho-smad2/3 in tubular cells displaying EMT. The level of snail1 was significantly correlated with the scores of EMT markers (ß-catenin: ρ = 0.94, P < 0.0001; vimentin: ρ = 0.93, P < 0.0001) and with deteriorated graft function and proteinuria at the time of biopsy. Furthermore, intense staining for both snail1 and vimentin in tubular cells (≥10% of tubules) was predictive of graft dysfunction 21 months post-biopsy, independently of the other known risk factor for long-term graft dysfunction. In contrast, in both normal and diseased graft, zeb1 expression was detected exclusively in the endothelial cells of glomeruli and peritubular capillaries. CONCLUSION: This study suggests that snail1 is closely related to the fibrogenic, EMT-like response of the tubular epithelium in human renal grafts and predictive of graft function loss.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Rejeição de Enxerto/metabolismo , Transplante de Rim , Túbulos Renais/metabolismo , Proteína Smad2/biossíntese , Biópsia , Células Epiteliais/patologia , Feminino , Fibrose/metabolismo , Fibrose/patologia , Rejeição de Enxerto/patologia , Humanos , Imuno-Histoquímica , Falência Renal Crônica/cirurgia , Túbulos Renais/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Arterioscler Thromb Vasc Biol ; 33(9): 2162-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846499

RESUMO

OBJECTIVE: Some mutations in LMNA, encoding A-type lamins, are responsible for Dunnigan-type-familial partial lipodystrophy (FPLD2), with altered fat distribution and metabolism. The high prevalence of early and severe cardiovascular outcomes in these patients suggests that, in addition to metabolic risk factors, FPLD2-associated LMNA mutations could have a direct role on the vascular wall cells. APPROACH AND RESULTS: We analyzed the cardiovascular phenotype of 19 FPLD2 patients aged >30 years with LMNA p.R482 heterozygous substitutions, and the effects of p.R482W-prelamin-A overexpression in human coronary artery endothelial cells. In 68% of FPLD2 patients, early atherosclerosis was attested by clinical cardiovascular events, occurring before the age of 45 in most cases. In transduced endothelial cells, exogenous wild-type-prelamin-A was correctly processed and localized, whereas p.R482W-prelamin-A accumulated abnormally at the nuclear envelope. Patients' fibroblasts also showed a predominant nuclear envelope distribution with a decreased rate of prelamin-A maturation. Only p.R482W-prelamin-A induced endothelial dysfunction, with decreased production of NO, increased endothelial adhesion of peripheral blood mononuclear cells, and cellular senescence. p.R482W-prelamin-A also induced oxidative stress, DNA damages, and inflammation. These alterations were prevented by treatment of endothelial cells with pravastatin, which inhibits prelamin-A farnesylation, or with antioxidants. In addition, pravastatin allowed the correct relocalization of p.R482W-prelamin-A within the endothelial cell nucleus. These data suggest that farnesylated p.R482W-prelamin-A accumulation at the nuclear envelope is a toxic event, leading to cellular oxidative stress and endothelial dysfunction. CONCLUSIONS: LMNA p.R482 mutations, responsible for FPLD2, exert a direct proatherogenic effect in endothelial cells, which could contribute to patients' early atherosclerosis.


Assuntos
Aterosclerose/genética , Células Endoteliais/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Mutação , Adulto , Idade de Início , Antioxidantes/farmacologia , Aterosclerose/epidemiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Adesão Celular , Senescência Celular , Técnicas de Cocultura , Dano ao DNA , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Fibroblastos/metabolismo , Predisposição Genética para Doença , Células HEK293 , Heterozigoto , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipodistrofia Parcial Familiar/epidemiologia , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Fenótipo , Prenilação , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transdução Genética , Transfecção
6.
Eur J Endocrinol ; 190(2): 151-164, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245004

RESUMO

OBJECTIVE: SOFT syndrome (MIM#614813), denoting Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis, is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A, encoding a centriolar protein. SOFT syndrome, characterized by severe growth failure of prenatal onset and dysmorphic features, was recently associated with insulin resistance. This study aims to further explore its endocrinological features and pathophysiological mechanisms. DESIGN/METHODS: We present clinical, biochemical, and genetic features of 2 unrelated patients carrying biallelic pathogenic POC1A variants. Cellular models of the disease were generated using patients' fibroblasts and POC1A-deleted human adipose stem cells. RESULTS: Both patients present with clinical features of SOFT syndrome, along with hyperinsulinemia, diabetes or glucose intolerance, hypertriglyceridemia, liver steatosis, and central fat distribution. They also display resistance to the effects of IGF-1. Cellular studies show that the lack of POC1A protein expression impairs ciliogenesis and adipocyte differentiation, induces cellular senescence, and leads to resistance to insulin and IGF-1. An altered subcellular localization of insulin receptors and, to a lesser extent, IGF1 receptors could also contribute to resistance to insulin and IGF1. CONCLUSIONS: Severe growth retardation, IGF-1 resistance, and centripetal fat repartition associated with insulin resistance-related metabolic abnormalities should be considered as typical features of SOFT syndrome caused by biallelic POC1A null variants. Adipocyte dysfunction and cellular senescence likely contribute to the metabolic consequences of POC1A deficiency. SOFT syndrome should be included within the group of monogenic ciliopathies with metabolic and adipose tissue involvement, which already encompasses Bardet-Biedl and Alström syndromes.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Resistência à Insulina , Insulinas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Fator de Crescimento Insulin-Like I , Resistência à Insulina/genética , Ciliopatias/genética , Anormalidades Múltiplas/genética
7.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326638

RESUMO

Vasculogenic mimicry (VM) formed by aggressive tumor cells to create vascular networks connected with the endothelial cells, plays an important role in breast cancer progression. WISP2 has been considered as a tumor suppressor protein; however, the relationship between WISP2 and VM formation remains unclear. We used the in vitro tube formation assay and in vivo immunohistochemical analysis in a mouse model, and human breast tumors were used to evaluate the effect of WISP2 on VM formation. Here we report that WISP2 acts as a potent inhibitor of VM formation in breast cancer. Enforced expression of WISP2 decreased network formation while knockdown of WISP2 increased VM. Mechanistically, WISP2 increased retention of oncogenic activators YAP/TAZ in cytoplasm, leading to decreased expression of the angiogenic factor CYR61. Studies using an in vivo mouse model and human breast tumors confirmed the in vitro cell lines data. In conclusion, our results indicate that WISP2 may play a critical role in VM and highlight the critical role of WISP2 as a tumor suppressor.

8.
Cells ; 11(4)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203270

RESUMO

ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Colestase Intra-Hepática , Colestase , Miotonina Proteína Quinase , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células HEK293 , Humanos , Cadeias Leves de Miosina , Miosina Tipo II , Miotonina Proteína Quinase/metabolismo
9.
J Med Chem ; 64(22): 16675-16686, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761949

RESUMO

Half-sandwich complexes of iridium(III) are currently being developed as anticancer drug candidates. In this context, we introduce IrBDP for which the C^N chelating phenyloxazoline ligand carries a fluorescent and lipophilic BODIPY reporter group, designed for intracellular tracking and hydrophobic compartment tropism. High-resolution analysis of cells cultured with IrBDP showed that it quickly permeates the plasma membrane and accumulates in the mitochondria and endoplasmic reticulum (ER), generating ER stress, dispersal of the Golgi apparatus, cell proliferation arrest and apoptotic cell death. Moreover, IrBDP forms fluorescent adducts with a subset of amino acids, namely histidine and cysteine, via coordination of N or S donor atoms of their side chains. Consistently, in vivo formation of covalent adducts with specific proteins is demonstrated, providing a molecular basis for the observed cytotoxicity and cellular response. Collectively, these results provide a new entry to the development of half-sandwich iridium-based anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/química , Estresse do Retículo Endoplasmático , Irídio/química , Proteínas/química , Células HeLa , Humanos
10.
Front Endocrinol (Lausanne) ; 12: 739287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690932

RESUMO

Background: Obesity is a major public health problem of our time as a risk factor for cardiometabolic disease and the available pharmacological tools needed to tackle the obesity pandemic are insufficient. Neurotensin (NTS) is a 13 amino acid peptide, which is derived from a larger precursor hormone called proneurotensin or Long Form NTS (LF NTS). NTS modulates neuro-transmitter release in the central system nervous, and facilitates intestinal fat absorption in the gastrointestinal tract. Mice lacking LF NTS are protected from high fat diet (HFD) induced obesity, hepatic steatosis and glucose intolerance. In humans, increased levels of LF NTS strongly and independently predict the development of obesity, diabetes mellitus, cardiovascular disease and mortality. With the perspective to develop therapeutic tools to neutralize LF NTS, we developed a monoclonal antibody, specifically inhibiting the function of the LF NTS (LF NTS mAb). This antibody was tested for the effects on body weight, metabolic parameters and behavior in mice made obese by high-fat diet. Methods: C57bl/6j mice were subjected to high-fat diet (HFD) until they reached an obesity state, then food was switched to chow. Mice were treated with either PBS (control therapy) or LF NTS mAb at the dose of 5 mg/kg once a week (i.v.). Mice weight, plasma biochemical analysis, fat and muscle size and distribution and behavioral tests were performed during the losing weight period and the stabilization period. Results: Obese mice treated with the LF NTS mAb lost weight significantly faster than the control treated group. LF NTS mAb treatment also resulted in smaller fat depots, increased fecal cholesterol excretion, reduced liver fat and larger muscle fiber size. Moreover, mice on active therapy were also less stressed, more curious and more active, providing a possible explanation to their weight loss. Conclusion: Our results demonstrate that in mice subjected to HFD-induced obesity, a blockade of LF NTS with a monoclonal antibody results in reduced body weight, adipocyte volume and increased muscle fiber size, possibly explained by beneficial effects on behavior. The underlying mechanisms as well as any future role of LF NTS mAb as an anti-obesity agent warrants further studies.


Assuntos
Anticorpos Monoclonais/farmacologia , Comportamento Animal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Neurotensina/imunologia , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
11.
Cells ; 9(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408587

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder notably characterized by precocious and deadly atherosclerosis. Almost 90% of HGPS patients carry a LMNA p.G608G splice variant that leads to the expression of a permanently farnesylated abnormal form of prelamin-A, referred to as progerin. Endothelial dysfunction is a key determinant of atherosclerosis, notably during aging. Previous studies have shown that progerin accumulates in HGPS patients' endothelial cells but also during vascular physiological aging. However, whether progerin expression in human endothelial cells can recapitulate features of endothelial dysfunction is currently unknown. Herein, we evaluated the direct impact of exogenously expressed progerin and wild-type lamin-A on human endothelial cell function and senescence. Our data demonstrate that progerin, but not wild-type lamin-A, overexpression induces endothelial cell dysfunction, characterized by increased inflammation and oxidative stress together with persistent DNA damage, increased cell cycle arrest protein expression and cellular senescence. Inhibition of progerin prenylation using a pravastatin-zoledronate combination partly prevents these defects. Our data suggest a direct proatherogenic role of progerin in human endothelial cells, which could contribute to HGPS-associated early atherosclerosis and also potentially be involved in physiological endothelial aging participating to age-related cardiometabolic diseases.


Assuntos
Senescência Celular , Vasos Coronários/patologia , Células Endoteliais/patologia , Inflamação/patologia , Lamina Tipo A/metabolismo , Estresse Oxidativo , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Células Cultivadas , Dano ao DNA , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico Sintase/metabolismo , Prenilação de Proteína
12.
Dis Model Mech ; 13(4)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32094147

RESUMO

Normothermic perfusion provides a means to rescue steatotic liver grafts, including by pharmacological defatting. In this study, we tested the potential of new drug combinations to trigger defatting in three human culture models, primary hepatocytes with induced steatosis, primary hepatocytes isolated from steatotic liver, and precision-cut liver slices (PCLS) of steatotic liver. Forskolin, L-carnitine and a PPARα agonist were all combined with rapamycin, an immunosuppressant that induces autophagy, in a D-FAT cocktail. D-FAT was tested alone or in combination with necrosulfonamide, an inhibitor of mixed lineage kinase domain like pseudokinase involved in necroptosis. Within 24 h, in all three models, D-FAT induced a decrease in triglyceride content by 30%, attributable to an upregulation of genes involved in free fatty acid ß-oxidation and autophagy, and a downregulation of those involved in lipogenesis. Defatting was accompanied by a decrease in endoplasmic reticulum stress and in the production of reactive oxygen species. The addition of necrosulfonamide increased the efficacy of defatting by 8%-12% in PCLS, with a trend towards increased autophagy. In conclusion, culture models, notably PCLS, are insightful to design strategies for liver graft rescue. Defatting can be rapidly achieved by combinations of drugs targeting mitochondrial oxidative metabolism, macro-autophagy and lipogenesis.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Metabolismo dos Lipídeos , Modelos Biológicos , Acrilamidas , Células Cultivadas , Ácidos Graxos , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Sulfonamidas
13.
Diabetes ; 66(6): 1470-1478, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28270520

RESUMO

Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes, our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties, including upregulation of thermogenic genes, increased mitochondrial content, and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue, capable of ß-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Técnicas de Reprogramação Celular/métodos , Glucose/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Resistência à Insulina , Obesidade , Termogênese/genética , Adipócitos Bege/citologia , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/transplante , Adipogenia , Tecido Adiposo/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Transplante de Células , Fluordesoxiglucose F18 , Perfilação da Expressão Gênica , Humanos , Isoproterenol/farmacologia , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Compostos Radiofarmacêuticos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA