Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Sci ; 134(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34477203

RESUMO

Both tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity has been hypothesized to be required for the metastatic activity of DDR2; however, inhibition of DDR2 tyrosine kinase activity, along with that of other RTKs, has failed to provide clinically relevant responses in metastatic patients. Here, we show that tyrosine kinase activity-independent action of DDR2 in tumor cells can support Matrigel invasion and in vivo metastasis. Paracrine actions of DDR2 in tumor cells and cancer-associated fibroblasts (CAFs) also support tumor invasion, migration and lung colonization in vivo. These data suggest that tyrosine kinase-independent functions of DDR2 could explain failures of tyrosine kinase inhibitor treatment in metastatic breast cancer patients and highlight the need for alternative therapeutic strategies that inhibit both tyrosine kinase-dependent and -independent actions of RTKs in the treatment of breast cancer. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Receptor com Domínio Discoidina 2 , Animais , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Movimento Celular , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Fosforilação , Microambiente Tumoral
2.
Blood ; 130(19): 2101-2110, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28811304

RESUMO

E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewisx (sLex), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity ß2-integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLex expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of ß2-integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLex, resulting in focal clusters that deliver a distinct signal to upshift ß2-integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended ß2-integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.


Assuntos
Anemia Falciforme/metabolismo , Antígenos CD18/metabolismo , Inibição de Migração Celular , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Selectina L/metabolismo , Migração e Rolagem de Leucócitos , Mecanotransdução Celular , Neutrófilos/metabolismo , Migração Transendotelial e Transepitelial , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/patologia , Calgranulina B/metabolismo , Adesão Celular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Neutrófilos/patologia , Oligossacarídeos/metabolismo , Resistência ao Cisalhamento , Antígeno Sialil Lewis X , Receptor 4 Toll-Like/metabolismo
3.
Mol Cancer Res ; 22(5): 495-507, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334461

RESUMO

Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS: This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.


Assuntos
Movimento Celular , Invasividade Neoplásica , Neoplasias Ovarianas , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Feminino , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Via de Sinalização Wnt , Transdução de Sinais
4.
Cancer Discov ; 14(7): 1302-1323, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683161

RESUMO

The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in HER2+, ER+, and triple-negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development. Significance: senCAFs limit NK cell-mediated killing, thereby contributing to breast cancer progression. Thus, targeting senCAFs could be a clinically viable approach to limit tumor progression. See related article by Belle et al., p. 1324.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Progressão da Doença , Microambiente Tumoral , Animais , Feminino , Camundongos , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Microambiente Tumoral/imunologia , Células Matadoras Naturais/imunologia , Senescência Celular/imunologia
5.
Commun Biol ; 6(1): 1216, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030698

RESUMO

Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively functional non-coding somatic variants that are located within predicted melanoma-specific regulatory regions. We identified hundreds of statistically significant hotspots, including the hotspot containing the TERT promoter variants, and focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in human A375 melanoma cell lines and observed decreased expression of CDC20, changes in migration capabilities, increased growth of xenografts, and an altered transcriptional state previously associated with a more proliferative and less migratory state. Overall, our analysis prioritized several recurrent functional non-coding variants that, through downregulation of CDC20, led to perturbation of key melanoma phenotypes.


Assuntos
Melanoma , Humanos , Mutação , Melanoma/genética , Melanoma/metabolismo , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Genoma , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
6.
Dev Cell ; 58(1): 34-50.e9, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626870

RESUMO

Carcinoma dissemination can occur when heterogeneous tumor and tumor-stromal cell clusters migrate together via collective migration. Cells at the front lead and direct collective migration, yet how these leader cells form and direct migration are not fully appreciated. From live videos of primary mouse and human breast tumor organoids in a 3D microfluidic system mimicking native breast tumor microenvironment, we developed 3D computational models, which hypothesize that leader cells need to generate high protrusive forces and overcome extracellular matrix (ECM) resistance at the leading edge. From single-cell sequencing analyses, we find that leader cells are heterogeneous and identify and isolate a keratin 14- and cadherin-3-positive subpopulation sufficient to lead collective migration. Cdh3 controls leader cell protrusion dynamics through local production of laminin, which is required for integrin/focal adhesion function. Our findings highlight how a subset of leader cells interact with the microenvironment to direct collective migration.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Humanos , Animais , Feminino , beta Catenina , Laminina , Movimento Celular/fisiologia , Caderinas/metabolismo , Neoplasias da Mama/patologia , Microambiente Tumoral
7.
Cells ; 11(18)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139397

RESUMO

On arrested neutrophils a focal adhesive cluster of ~200 high affinity (HA) ß2-integrin bonds under tension is sufficient to trigger Ca2+ flux that signals an increase in activation in direct proportion to increments in shear stress. We reasoned that a threshold tension acting on individual ß2-integrin bonds provides a mechanical means of transducing the magnitude of fluid drag force into signals that enhance the efficiency of neutrophil recruitment and effector function. Tension gauge tethers (TGT) are a duplex of DNA nucleotides that rupture at a precise shear force, which increases with the extent of nucleotide overlap, ranging from a tolerance of 54pN to 12pN. TGT annealed to a substrate captures neutrophils via allosteric antibodies that stabilize LFA-1 in a high- or low-affinity conformation. Neutrophils sheared on TGT substrates were recorded in real time to form HA ß2-integrin bonds and flux cytosolic Ca2+, which elicited shape change and downstream production of reactive oxygen species. A threshold force of 33pN triggered consolidation of HA ß2-integrin bonds and triggered membrane influx of Ca2+, whereas an optimum tension of 54pN efficiently transduced activation at a level equivalent to chemotactic stimulation on ICAM-1. We conclude that neutrophils sense the level of fluid drag transduced through individual ß2-integrin bonds, providing an intrinsic means to modulate inflammatory response in the microcirculation.


Assuntos
Antígenos CD18 , Antígeno-1 Associado à Função Linfocitária , Adesivos , Cálcio , Molécula 1 de Adesão Intercelular , Neutrófilos , Nucleotídeos , Espécies Reativas de Oxigênio
8.
Cardiovasc Res ; 118(5): 1289-1302, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33881519

RESUMO

AIMS: Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. METHODS AND RESULTS: Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. CONCLUSION: We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Cálcio/metabolismo , Inflamação , Canal de Potássio Kv1.5 , Potenciais da Membrana/fisiologia , Camundongos , Infiltração de Neutrófilos
9.
Biophys J ; 100(2): 498-506, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21244846

RESUMO

Molecular dynamics (MD) simulations, circular dichroism (CD), and dynamic light scattering (DLS) measurements were used to investigate the aggregation propensity of the eye-lens protein γS-crystallin. The wild-type protein was investigated along with the cataract-related G18V variant and the symmetry-related G106V variant. The MD simulations suggest that local sequence differences result in dramatic differences in dynamics and hydration between these two apparently similar point mutations. This finding is supported by the experimental measurements, which show that although both variants appear to be mostly folded at room temperature, both display increased aggregation propensity. Although the disease-related G18V variant is not the most strongly destabilized, it aggregates more readily than either the wild-type or the G106V variant. These results indicate that γS-crystallin provides an excellent model system for investigating the role of dynamics and hydration in aggregation by locally unfolded proteins.


Assuntos
Cristalinas/química , Cristalinas/genética , Simulação de Dinâmica Molecular , Mutação Puntual , gama-Cristalinas/química , gama-Cristalinas/genética , Catarata/genética , Catarata/patologia , Dicroísmo Circular , Humanos , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína
10.
Front Immunol ; 12: 663886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995392

RESUMO

Neutrophils are essential to protect the host against invading pathogens but can promote disease progression in sickle cell disease (SCD) by becoming adherent to inflamed microvascular networks in peripheral tissue throughout the body. During the inflammatory response, leukocytes extravasate from the bloodstream using selectin adhesion molecules and migrate to sites of tissue insult through activation of integrins that are essential for combating pathogens. However, during vaso-occlusion associated with SCD, neutrophils are activated during tethering and rolling on selectins upregulated on activated endothelium that line blood vessels. Recently, we reported that recognition of sLex on L-selectin by E-selectin during neutrophil rolling initiates shear force resistant catch-bonds that facilitate tethering to endothelium and activation of integrin bond clusters that anchor cells to the vessel wall. Evidence indicates that blocking this important signaling cascade prevents the congestion and ischemia in microvasculature that occurs from neutrophil capture of sickled red blood cells, which are normally deformable ellipses that flow easily through small blood vessels. Two recently completed clinical trials of therapies targeting selectins and their effect on neutrophil activation in small blood vessels reveal the importance of mechanoregulation that in health is an immune adaption facilitating rapid and proportional leukocyte adhesion, while sustaining tissue perfusion. We provide a timely perspective on the mechanism underlying vaso-occlusive crisis (VOC) with a focus on new drugs that target selectin mediated integrin adhesive bond formation.


Assuntos
Anemia Falciforme/complicações , Adesão Celular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/imunologia , Plaquetas/metabolismo , Moléculas de Adesão Celular/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Endotélio/metabolismo , Humanos , Migração e Rolagem de Leucócitos/genética , Migração e Rolagem de Leucócitos/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Selectinas/metabolismo
11.
J Leukoc Biol ; 108(6): 1815-1828, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531836

RESUMO

Recruitment of leukocytes to sites of acute inflammation is guided by spatial and temporal cues that ensure appropriate cell numbers infiltrate the tissue at precise locations to protect it from infection and initiate repair. On inflamed endothelium, neutrophil rolling via selectins elicits cytosolic calcium release from endoplasmic reticulum (ER)-stores that are synergistic with chemokine signaling to activate formation of high affinity (HA) LFA-1 bonds to ICAM-1, which is necessary to anchor cells against the drag force of blood flow. Bond tension on LFA-1 within the area of adhesive contact with endothelium elicits calcium entry through calcium release-activated calcium channel protein 1 (Orai-1) membrane channels that in turn activate neutrophil shape change and migration. We hypothesized that mechanotransduction via LFA-1 is mediated by assembly of a cytosolic molecular complex consisting of Kindlin-3, receptor for activated C kinase 1 (RACK1), and Orai1. Initiation of Ca2+ flux at sites of adhesive contact required a threshold level of shear stress and increased with the magnitude of bond tension transduced across as few as 200 HA LFA-1. A sequential mechanism triggered by force acting on LFA-1/Kindlin-3 precipitated dissociation of RACK1, which formed a concentration gradient above LFA-1 bond clusters. This directed translocation of ER proximal to Orai1, where binding of inositol 1,4,5-triphosphate receptor type 1 and activation via stromal interaction molecule 1 elicited Ca flux and subsequent neutrophil shape change and motility. We conclude that neutrophils sense adhesive traction on LFA-1 bonds on a submicron scale to direct calcium influx, thereby ensuring sufficient shear stress of blood flow is present to trigger cell arrest and initiate transmigration at precise regions of vascular inflammation.


Assuntos
Antígeno-1 Associado à Função Linfocitária/imunologia , Mecanotransdução Celular/imunologia , Neutrófilos/imunologia , Resistência à Tração , Humanos , Inflamação/imunologia , Inflamação/patologia , Molécula 1 de Adesão Intercelular/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Neutrófilos/patologia , Proteína ORAI1/imunologia , Receptores de Quinase C Ativada/imunologia
12.
J Leukoc Biol ; 107(2): 167-169, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31777979

RESUMO

Discussion on the flexible kink produced in the ß2 -integrin transmembrane domain blocking mechanotransduction of signals necessary for neutrophil arrest and spreading.


Assuntos
Antígenos CD18 , Ativação de Neutrófilo , Adesão Celular , Integrinas , Mecanotransdução Celular , Neutrófilos
13.
Front Immunol ; 11: 571489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362760

RESUMO

Superparamagnetic iron oxide nanoparticles (SPION) are employed as diagnostics and therapeutics following intravenous delivery for the treatment of iron deficiency anemia (IDA) in adult patients with chronic kidney failure. Neutrophils are the first defense against blood borne foreign insult and recruit to vascular sites of inflammation via a sequential process that is characterized by adhesive capture, rolling, and shear resistant arrest. A primary chemotactic agonist presented on the glycocalyx of inflamed endothelium is IL-8, which upon binding to its cognate membrane receptor (CXCR1/2) activates a suite of responses in neutrophils. An early response is degranulation with accompanying upregulation of ß2-integrin (CD11/CD18) and shedding of L-selectin (CD62L) receptors, which exert differential effects on the efficiency of endothelial recruitment. Feraheme is an FDA approved SPION treatment for IDA, but its effect on the innate immune response of neutrophils during inflammation has not been reported. Here, we studied the immunomodulatory effects of Feraheme on neutrophils freshly isolated from healthy human subjects and stimulated in suspension or on inflammatory mimetic substrates with IL-8. Cells treated with Feraheme exhibited reduced sensitivity to stimulation with IL-8, indicated by reduced upregulation of membrane CD11b/CD18 receptors, high affinity (HA) CD18, and shedding of CD62L. Feraheme also inhibited N-formyl-Met-Leu-Phe (fMLP) induced reactive oxygen species production. Neutrophil rolling, arrest, and migration was assessed in vascular mimetic microfluidic channels coated with E-selectin and ICAM-1 to simulate inflamed endothelium. Neutrophils exposed to Feraheme rolled faster on E-selectin and arrested less frequently on ICAM-1, in a manner dependent upon SPION concentration. Subsequent neutrophil shape change, and migration were also significantly inhibited in the presence of Feraheme. Lastly, Feraheme accelerated clearance of cytosolic calcium flux following IL-8 stimulation. We conclude that uptake of Feraheme by neutrophils inhibits chemotactic activation and downregulates normal rolling to arrest under shear flow. The mechanism involves increased calcium clearance following chemotactic activation, which may diminish the efficiency of recruitment from the circulation at vascular sites of inflammation.


Assuntos
Anemia Ferropriva/imunologia , Óxido Ferroso-Férrico/uso terapêutico , Inflamação/terapia , Falência Renal Crônica/imunologia , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Neutrófilos/imunologia , Anemia Ferropriva/terapia , Antígenos CD18/metabolismo , Sinalização do Cálcio , Degranulação Celular , Células Cultivadas , Humanos , Interleucina-8/metabolismo , Falência Renal Crônica/terapia , Selectina L/metabolismo , Ativação de Neutrófilo , Receptores de Interleucina-8A/metabolismo
14.
Cell Mol Bioeng ; 12(1): 121-130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740185

RESUMO

INTRODUCTION: The glycocalyx is a layer of glycoproteins, proteoglycans and glycosaminoglycans that coats the luminal surface of most blood vessels. It effectively regulates adhesive interactions between leukocytes in flowing blood and the endothelium, where during inflammation, binding to E- and P-selectins and intercellular adhesion molecule-1 (ICAM-1) promotes cell tethering and arrest under shear flow. METHODS: In this study, we examine the targeting of E-selectin by an engineered peptide moiety bound to a dermatan sulfate backbone. We further investigate this conjugate, denoted as EC-SEAL, by observing its binding to inflamed endothelium, and quantifying its ability to modulate neutrophil-endothelium interactions. RESULTS: Binding data reveal that EC-SEAL recognizes domains on E-selectin, and to a lesser degree on P- and L-selectin, and ICAM-1. Further, EC-SEAL increases neutrophil rolling velocity, and decreases neutrophil arrest and migration on inflamed human microvascular endothelial cells under physiologically relevant flow conditions. CONCLUSIONS: We conclude that simple targeting strategies can mimic glycocalyx function under inflammatory conditions, effectively reducing neutrophil recruitment.

15.
Front Immunol ; 9: 2774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546362

RESUMO

Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.


Assuntos
Vasos Sanguíneos/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Integrinas/imunologia , Mecanotransdução Celular/imunologia , Neutrófilos/imunologia , Insuficiência Renal Crônica/imunologia , Adulto , Vasos Sanguíneos/patologia , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Neutrófilos/patologia , Insuficiência Renal Crônica/patologia
16.
ACS Omega ; 3(6): 6427-6438, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30221234

RESUMO

The complement system is our first line of defense against foreign pathogens, but when it is not properly regulated, complement is implicated in the pathology of several autoimmune and inflammatory disorders. Compstatin is a peptidic complement inhibitor that acts by blocking the cleavage of complement protein C3 to the proinflammatory fragment C3a and opsonin fragment C3b. In this study, we aim to identify druglike small-molecule complement inhibitors with physicochemical, geometric, and binding properties similar to those of compstatin. We employed two approaches using various high-throughput virtual screening methods, which incorporate molecular dynamics (MD) simulations, pharmacophore model design, energy calculations, and molecular docking and scoring. We have generated a library of 274 chemical compounds with computationally predicted binding affinities for the compstatin binding site of C3. We have tested subsets of these chemical compounds experimentally for complement inhibitory activity, using hemolytic assays, and for binding affinity, using microscale thermophoresis. As a result, although none of the compounds showed inhibitory activity, compound 29 was identified to exhibit weak competitive binding against a potent compstatin analogue, therefore validating our computational approaches. Additional docking and MD simulation studies suggest that compound 29 interacts with C3 residues, which have been shown to be important in binding of compstatin to the C3c fragment of C3. Compound 29 is amenable to physicochemical optimization to acquire inhibitory properties. Additionally, it is possible that some of the untested compounds will demonstrate binding and inhibition in future experimental studies.

17.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764950

RESUMO

Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5ß1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5ß1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to α5ß1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5ß1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to α5ß1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to α5ß1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5ß1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5ß1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ilhas Genômicas , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Interações Hospedeiro-Patógeno , Humanos , Integrina alfa5/genética , Integrina beta1/genética , Ligação Proteica , Sistemas de Secreção Tipo IV/genética
18.
Biorheology ; 52(5-6): 447-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26639357

RESUMO

BACKGROUND: Recombinant atrial natriuretic peptide (ANP) is administered in patients with acute heart failure in Japan to improve renal function and hemodynamics, but its anti-inflammatory effect on activated leukocytes may also contribute to its therapeutic efficacy. OBJECTIVE: Examine unconventional role of ANP in neutrophil adhesion to inflamed endothelium. METHODS: Human neutrophils were perfused over endothelial monolayers in a microfluidic lab-chip assay. Cell rheology was assessed by micropipette aspiration to assess changes in cortical tension and viscosity. Fluorescence microscopy was applied to measure adhesive contact area and ß2-integrin focal bond formation. RESULTS: ANP inhibited neutrophil rolling and firm adhesion without influencing the upregulation of cellular adhesion molecules on endothelium or the regulation of high affinity CD18 and shedding of L-selectin during neutrophil activation. Exposed to fluid shear, integrin mediated arrest was disrupted with ANP treatment, which elicited formation of long tethers and diminished cell spreading and contact. This correlated with a ∼40% increase in neutrophil viscosity and a reduction in the adhesive footprint. CONCLUSIONS: A decrease in cell deformation and neutrophil flattening with ANP results in fewer integrin bond clusters, which translates to higher tensile forces and impaired adhesion strengthening and cell detachment.


Assuntos
Fator Natriurético Atrial/farmacologia , Regulação para Baixo/efeitos dos fármacos , Endotélio/metabolismo , Hemorreologia/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Antígenos CD18/metabolismo , Adesão Celular/efeitos dos fármacos , Selectina E/genética , Selectina E/metabolismo , Endotélio/citologia , Hemorreologia/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Neutrófilos/citologia , Neutrófilos/fisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Resistência ao Cisalhamento/efeitos dos fármacos
19.
Nat Commun ; 6: 6387, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25824568

RESUMO

Blockade of P-selectin (P-sel)/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogues. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-sel with nanomolar affinity (Kd~22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-sel/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation.


Assuntos
Adesão Celular/efeitos dos fármacos , Glicopeptídeos/farmacologia , Glicoproteínas de Membrana/farmacologia , Monócitos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Selectina-P/antagonistas & inibidores , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Agregação Celular/efeitos dos fármacos , Linhagem Celular , Selectina E/metabolismo , Citometria de Fluxo , Humanos , Técnicas In Vitro , Selectina L/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Camundongos , Simulação de Dinâmica Molecular , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Selectina-P/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA