RESUMO
Several lines of evidence support a key role for CD8+ T cells in central nervous system tissue damage of patients with multiple sclerosis. However, the precise phenotype of the circulating CD8+ T cells that may be recruited from the peripheral blood to invade the CNS remains largely undefined to date. It has been suggested that IL-17 secreting CD8 (Tc17) T cells may be involved, and in humans these cells are characterized by the expression of CD161. We focused our study on a unique and recently described subset of CD8 T cells characterized by an intermediate expression of CD161 as its role in neuroinflammation has not been investigated to date. The frequency, phenotype, and function of CD8+ T cells with an intermediate CD161 expression level were characterized ex-vivo, in vitro, and in situ using RNAseq, RT-PCR, flow cytometry, TCR sequencing, and immunohistofluorescence of cells derived from healthy volunteers (n = 61), MS subjects (n = 90), as well as inflammatory (n = 15) and non-inflammatory controls (n = 6). We report here that CD8+CD161int T cells present characteristics of effector cells, up-regulate cell-adhesion molecules and have an increased ability to cross the blood-brain barrier and to secrete IL-17, IFNγ, GM-CSF, and IL-22. We further demonstrate that these cells are recruited and enriched in the CNS of MS subjects where they produce IL-17. In the peripheral blood, RNAseq, RT-PCR, high-throughput TCR repertoire analyses, and flow cytometry confirmed an increased effector and transmigration pattern of these cells in MS patients, with the presence of supernumerary clones compared to healthy controls. Our data demonstrate that intermediate levels of CD161 expression identifies activated and effector CD8+ T cells with pathogenic properties that are recruited to MS lesions. This suggests that CD161 may represent a biomarker and a valid target for the treatment of neuroinflammation.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Sistema Nervoso Central/imunologia , Esclerose Múltipla/imunologia , Inflamação Neurogênica/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismoRESUMO
In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.
Assuntos
Microbiota , Esclerose Múltipla , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Microbiota/genética , Bactérias/genética , InflamaçãoRESUMO
Multiple sclerosis is an autoimmune disease of the central nervous system. Yet, the autoimmune targets are still undefined. The extracellular e1 sequence of KCNJ10, the inwardly rectifying potassium channel 4.1, has been subject to fierce debate for its role as a candidate autoantigen in multiple sclerosis. Inwardly rectifying potassium channel 4.1 is expressed in the central nervous system but also in peripheral tissues, raising concerns about the central nervous system-specificity of such autoreactivity. Immunization of C57Bl6/J female mice with the e1 peptide (amino acids 83-120 of Kir4.1) induced anti-e1 immunoglobulin G- and T-cell responses and promoted demyelinating encephalomyelitis with B cell central nervous system enrichment in leptomeninges and T cells/macrophages in central nervous system parenchyma from forebrain to spinal cord, mostly in the white matter. Within our cohort of multiple sclerosis patients (n = 252), 6% exhibited high anti-e1 immunoglobulin G levels in serum as compared to 0.7% in the control cohort (n = 127; P = 0.015). Immunolabelling of inwardly rectifying potassium channel 4.1-expressing white matter glia with the anti-e1 serum from immunized mice increased during murine autoimmune neuroinflammation and in multiple sclerosis white matter as compared with controls. Strikingly, the mouse and human anti-e1 sera labelled astrocytoma cells when N-glycosylation was blocked with tunicamycin. Western blot confirmed that neuroinflammation induces Kir4.1 expression, including its shorter aglycosylated form in murine experimental autoencephalomyelitis and multiple sclerosis. In addition, recognition of inwardly rectifying potassium channel 4.1 using mouse anti-e1 serum in Western blot experiments under unreduced conditions or in cells transfected with the N-glycosylation defective N104Q mutant as compared to the wild type further suggests that autoantibodies target an e1 conformational epitope in its aglycosylated form. These data highlight the e1 sequence of inwardly rectifying potassium channel 4.1 as a valid central nervous system autoantigen with a disease/tissue-specific post-translational antigen modification as potential contributor to autoimmunity in some multiple sclerosis patients.
RESUMO
BACKGROUND AND OBJECTIVES: Ocrelizumab (OCR), a humanized anti-CD20 monoclonal antibody, is highly efficient in patients with relapsing-remitting multiple sclerosis (RR-MS). We assessed early cellular immune profiles and their association with disease activity at treatment start and under therapy, which may provide new clues on the mechanisms of action of OCR and on the disease pathophysiology. METHODS: A first group of 42 patients with an early RR-MS, never exposed to disease-modifying therapy, was included in 11 centers participating to an ancillary study of the ENSEMBLE trial (NCT03085810) to evaluate the effectiveness and safety of OCR. The phenotypic immune profile was comprehensively assessed by multiparametric spectral flow cytometry at baseline and after 24 and 48 weeks of OCR treatment on cryopreserved peripheral blood mononuclear cells and analyzed in relation to disease clinical activity. A second group of 13 untreated patients with RR-MS was included for comparative analysis of peripheral blood and CSF. The transcriptomic profile was assessed by single-cell qPCRs of 96 genes of immunologic interest. RESULTS: Using an unbiased analysis, we found that OCR as an effect on 4 clusters of CD4+ T cells: one corresponding to naive CD4+ T cells was increased, the other clusters corresponded to effector memory (EM) CD4+CCR6- T cells expressing homing and migration markers, 2 of them also expressing CCR5 and were decreased by the treatment. Of interest, one CD8+ T-cell cluster was decreased by OCR corresponding to EM CCR5-expressing T cells with high expression of the brain homing markers CD49d and CD11a and correlated with the time elapsed since the last relapse. These EM CD8+CCR5+ T cells were enriched in the CSF of patients with RR-MS and corresponded to activated and cytotoxic cells. DISCUSSION: Our study provides novel insights into the mode of action of anti-CD20, pointing toward the role of EM T cells, particularly a subset of CD8 T cells expressing CCR5.
Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Leucócitos Mononucleares , Anticorpos Monoclonais Humanizados/uso terapêuticoRESUMO
BACKGROUND AND OBJECTIVES: Tertiary lymphoid structures and aggregates are reported in the meninges of patients with multiple sclerosis (MS), especially at the progressive stage, and are strongly associated with cortical lesions and disability. Besides B cells, these structures comprise follicular helper T (Tfh) cells that are crucial to support B-cell differentiation. Tfh cells play a pivotal role in amplifying autoreactive B cells and promoting autoantibody production in several autoimmune diseases, but very few are known in MS. In this study, we examined the phenotype, frequency, and transcriptome of circulating cTfh cells in the blood and CSF of patients with relapsing-remitting MS (RRMS). METHODS: The phenotype and frequency of cTfh cells were analyzed in the blood of 39 healthy controls and 41 untreated patients with RRMS and in the CSF and paired blood of 10 patients with drug-naive RRMS at diagnosis by flow cytometry. Using an in vitro model of blood-brain barrier, we assessed the transendothelial migratory abilities of the different cTfh-cell subsets. Finally, we performed an RNA sequencing analysis of paired CSF cTfh cells and blood cTfh cells in 8 patients sampled at their first demyelinating event. RESULTS: The blood phenotype and frequency of cTfh cells were not significantly modified in patients with RRMS. In the CSF, we found an important infiltration of Tfh1 cells, with a high proportion of activated PD1+ cells. We demonstrated that the specific subset of Tfh1 cells presents increased migration abilities to cross an in vitro model of blood-brain barrier. Of interest, even at the first demyelinating event, cTfh cells in the CSF display specific characteristics with upregulation of EOMES gene and proinflammatory/cytotoxic transcriptomic signature able to efficiently distinguish cTfh cells from the CSF and blood. Finally, interactome analysis revealed potential strong cross talk between pathogenic B cells and CSF cTfh cells, pointing out the CSF as opportune supportive compartment and highlighting the very early implication of B-cell helper T cells in MS pathogenesis. DISCUSSION: Overall, CSF enrichment in activated Tfh1 as soon as disease diagnosis, associated with high expression of EOMES, and a predicted high propensity to interact with CSF B cells suggest that these cells probably contribute to disease onset and/or activity.
Assuntos
Esclerose Múltipla , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos B , Ativação Linfocitária , Contagem de Linfócitos , Esclerose Múltipla/patologia , Proteínas com Domínio T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Células Th1RESUMO
Background and Objectives: Inhibition of de novo pyrimidine synthesis in proliferating T and B lymphocytes by teriflunomide, a pharmacological inhibitor of dihydroorotate dehydrogenase (DHODH), has been shown to be an effective therapy to treat patients with MS in placebo-controlled phase 3 trials. Nevertheless, the underlying mechanism contributing to the efficacy of DHODH inhibition has been only partially elucidated. Here, we aimed to determine the impact of teriflunomide on the immune compartment in a longitudinal high-dimensional follow-up of patients with relapse-remitting MS (RRMS) treated with teriflunomide. Methods: High-dimensional spectral flow cytometry was used to analyze the phenotype and the function of innate and adaptive immune system of patients with RRMS before and 12 months after teriflunomide treatment. In addition, we assessed the impact of teriflunomide on the migration of memory CD8 T cells in patients with RRMS, and we defined patient immune metabolic profiles. Results: We found that 12 months of treatment with teriflunomide in patients with RRMS does not affect the B cell or CD4 T cell compartments, including regulatory TREG follicular helper TFH cell and helper TH cell subsets. In contrast, we observed a specific impact of teriflunomide on the CD8 T cell compartment, which was characterized by decreased homeostatic proliferation and reduced production of TNFα and IFNγ. Furthermore, we showed that DHODH inhibition also had a negative impact on the migratory velocity of memory CD8 T cells in patients with RRMS. Finally, we showed that the susceptibility of memory CD8 T cells to DHODH inhibition was not related to impaired metabolism. Discussion: Overall, these findings demonstrate that the clinical efficacy of teriflunomide results partially in the specific susceptibility of memory CD8 T cells to DHODH inhibition in patients with RRMS and strengthens active roles for these T cells in the pathophysiological process of MS.