Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1327863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414488

RESUMO

Background: The aim of the present study was to identify the metabolomic signature of responders and non-responders to an omega-3 fatty acid (n-3 FA) supplementation, and to test the ability of a multi-omics classifier combining genomic, lipidomic, and metabolomic features to discriminate plasma triglyceride (TG) response phenotypes. Methods: A total of 208 participants of the Fatty Acid Sensor (FAS). Study took 5 g per day of fish oil, providing 1.9-2.2 g eicosapentaenoic acid (EPA) and 1.1 g docosahexaenoic (DHA) daily over a 6-week period, and were further divided into two subgroups: responders and non-responders, according to the change in plasma TG levels after the supplementation. Changes in plasma levels of 6 short-chain fatty acids (SCFA) and 25 bile acids (BA) during the intervention were compared between subgroups using a linear mixed model, and the impact of SCFAs and BAs on the TG response was tested in a mediation analysis. Genotyping was conducted using the Illumina Human Omni-5 Quad BeadChip. Mass spectrometry was used to quantify plasma TG and cholesterol esters levels, as well as plasma SCFA and BA levels. A classifier was developed and tested within the DIABLO framework, which implements a partial least squares-discriminant analysis to multi-omics analysis. Different classifiers were developed by combining data from genomics, lipidomics, and metabolomics. Results: Plasma levels of none of the SCFAs or BAs measured before and after the n-3 FA supplementation were significantly different between responders and non-responders. SCFAs but not BAs were marginally relevant in the classification of plasma TG responses. A classifier built by adding plasma SCFAs and lipidomic layers to genomic data was able to even the accuracy of 85% shown by the genomic predictor alone. Conclusion: These results inform on the marginal relevance of SCFA and BA plasma levels as surrogate measures of gut microbiome in the assessment of the interindividual variability observed in the plasma TG response to an n-3 FA supplementation. Genomic data still represent the best predictor of plasma TG response, and the inclusion of metabolomic data added little to the ability to discriminate the plasma TG response phenotypes.

3.
Front Nutr ; 8: 789215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004815

RESUMO

Background: There is a significant lack of consistency used to determine the scientific validity of nutrigenetic research. The aims of this study were to examine existing frameworks used for determining scientific validity in nutrition and/or genetics and to determine which framework would be most appropriate to evaluate scientific validity in nutrigenetics in the future. Methods: A systematic review (PROSPERO registration: CRD42021261948) was conducted up until July 2021 using Medline, Embase, and Web of Science, with articles screened in duplicate. Gray literature searches were also conducted (June-July 2021), and reference lists of two relevant review articles were screened. Included articles provided the complete methods for a framework that has been used to evaluate scientific validity in nutrition and/or genetics. Articles were excluded if they provided a framework for evaluating health services/systems more broadly. Citing articles of the included articles were then screened in Google Scholar to determine if the framework had been used in nutrition or genetics, or both; frameworks that had not were excluded. Summary tables were piloted in duplicate and revised accordingly prior to synthesizing all included articles. Frameworks were critically appraised for their applicability to nutrigenetic scientific validity assessment using a predetermined categorization matrix, which included key factors deemed important by an expert panel for assessing scientific validity in nutrigenetics. Results: Upon screening 3,931 articles, a total of 49 articles representing 41 total frameworks, were included in the final analysis (19 used in genetics, 9 used in nutrition, and 13 used in both). Factors deemed important for evaluating nutrigenetic evidence related to study design and quality, generalizability, directness, consistency, precision, confounding, effect size, biological plausibility, publication/funding bias, allele and nutrient dose-response, and summary levels of evidence. Frameworks varied in the components of their scientific validity assessment, with most assessing study quality. Consideration of biological plausibility was more common in frameworks used in genetics. Dose-response effects were rarely considered. Two included frameworks incorporated all but one predetermined key factor important for nutrigenetic scientific validity assessment. Discussion/Conclusions: A single existing framework was highlighted as optimal for the rigorous evaluation of scientific validity in nutritional genomics, and minor modifications are proposed to strengthen it further. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=261948, PROSPERO [CRD42021261948].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA