Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Exp Bot ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776254

RESUMO

The ATP-driven bicarbonate transporter 1 (BCT1), a four-component complex in the cyanobacterial CO2-concentrating mechanism, could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.

2.
Plant Physiol ; 190(4): 2173-2186, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36149291

RESUMO

Carbonic anhydrases (CAs) are zinc-metalloenzymes that catalyze the interconversion of CO2 and HCO3-. In heterotrophic organisms, CAs provide HCO3- for metabolic pathways requiring a carboxylation step. Arabidopsis (Arabidopsis thaliana) has 14 α- and ß-type CAs, two of which are plastid CAs designated as ßCA1 and ßCA5. To study their physiological properties, we obtained knock-out (KO) lines for ßCA1 (SALK_106570) and ßCA5 (SALK_121932). These mutant lines were confirmed by genomic PCR, RT-PCR, and immunoblotting. While ßca1 KO plants grew normally, growth of ßca5 KO plants was stunted under ambient CO2 conditions of 400 µL L-1; high CO2 conditions (30,000 µL L-1) partially rescued their growth. These results were surprising, as ßCA1 is more abundant than ßCA5 in leaves. However, tissue expression patterns of these genes indicated that ßCA1 is expressed only in shoot tissue, while ßCA5 is expressed throughout the plant. We hypothesize that ßCA5 compensates for loss of ßCA1 but, owing to its expression being limited to leaves, ßCA1 cannot compensate for loss of ßCA5. We also demonstrate that ßCA5 supplies HCO3- required for anaplerotic pathways that take place in plastids, such as fatty acid biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anidrases Carbônicas , Arabidopsis/fisiologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo
3.
Photosynth Res ; 156(2): 193-204, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856938

RESUMO

Chlamydomonas reinhardtii evolved a CO2-concentrating mechanism (CCM) because of the limited CO2 in its natural environment. One critical component of the C. reinhardtii CCM is the limiting CO2 inducible B (LCIB) protein. LCIB is required for acclimation to air levels of CO2. C. reinhardtii cells with a mutated LCIB protein have an 'air-dier' phenotype when grown in low CO2 conditions, meaning they die in air levels of CO2 but can grow in high and very low CO2 conditions. The LCIB protein functions together with its close homolog in C. reinhardtii, limiting CO2 inducible C protein (LCIC), in a hexameric LCIB-LCIC complex. LCIB has been proposed to act as a vectoral carbonic anhydrase (CA) that helps to recapture CO2 that would otherwise leak out of the chloroplast. Although both LCIB and LCIC are structurally similar to ßCAs, their CA activity has not been demonstrated to date. We provide evidence that LCIB is an active CA using a Saccharomyces cerevisiae CA knockout mutant (∆NCE103) and an Arabidopsis thaliana ßCA5 knockout mutant (ßca5). We show that different truncated versions of the LCIB protein complement ∆NCE103, while the full length LCIB protein complements ßca5 plants, so that both the yeast and plant mutants can grow in low CO2 conditions.


Assuntos
Arabidopsis , Anidrases Carbônicas , Chlamydomonas reinhardtii , Fotossíntese/genética , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
4.
J Exp Bot ; 74(12): 3651-3666, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36987927

RESUMO

LCIA (low CO2-inducible protein A) is a chloroplast envelope protein associated with the CO2-concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an Escherichia coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (ßca5) missing the plastid carbonic anhydrase ßCA5. Neither DCAKO nor ßca5 can grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the ßca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2-concentrating mechanisms.


Assuntos
Anidrases Carbônicas , Chlamydomonas reinhardtii , Bicarbonatos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Plantas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo
5.
Plant Physiol ; 187(3): 1387-1398, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618049

RESUMO

Chlamydomonas reinhardtii can grow photosynthetically using CO2 or in the dark using acetate as the carbon source. In the light in air, the CO2 concentrating mechanism (CCM) of C. reinhardtii accumulates CO2, enhancing photosynthesis. A combination of carbonic anhydrases (CAs) and bicarbonate transporters in the CCM of C. reinhardtii increases the CO2 concentration at Ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) in the chloroplast pyrenoid. Previously, CAs important to the CCM have been found in the periplasmic space, surrounding the pyrenoid and inside the thylakoid lumen. Two almost identical mitochondrial CAs, CAH4 and CAH5, are also highly expressed when the CCM is made, but their role in the CCM is not understood. Here, we adopted an RNAi approach to reduce the expression of CAH4 and CAH5 to study their possible physiological functions. RNAi mutants with low expression of CAH4 and CAH5 had impaired rates of photosynthesis under ambient levels of CO2 (0.04% CO2 [v/v] in air). These strains were not able to grow at very low CO2 (<0.02% CO2 [v/v] in air), and their ability to accumulate inorganic carbon (Ci = CO2 + HCO3-) was reduced. At low CO2 concentrations, the CCM is needed to both deliver Ci to Rubisco and to minimize the leak of CO2 generated by respiration and photorespiration. We hypothesize that CAH4 and CAH5 in the mitochondria convert the CO2 released from respiration and photorespiration as well as the CO2 leaked from the chloroplast to HCO3- thus "recapturing" this potentially lost CO2.


Assuntos
Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Chlamydomonas reinhardtii/enzimologia
7.
Proc Natl Acad Sci U S A ; 116(34): 16915-16920, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31391312

RESUMO

The green alga Chlamydomonas reinhardtii possesses a CO2 concentrating mechanism (CCM) that helps in successful acclimation to low CO2 conditions. Current models of the CCM postulate that a series of ion transporters bring HCO3- from outside the cell to the thylakoid lumen, where the carbonic anhydrase 3 (CAH3) dehydrates accumulated HCO3- to CO2, raising the CO2 concentration for Ribulose bisphosphate carboxylase/oxygenase (Rubisco). Previously, HCO3- transporters have been identified at both the plasma membrane and the chloroplast envelope, but the transporter thought to be on the thylakoid membrane has not been identified. Three paralogous genes (BST1, BST2, and BST3) belonging to the bestrophin family have been found to be up-regulated in low CO2 conditions, and their expression is controlled by CIA5, a transcription factor that controls many CCM genes. YFP fusions demonstrate that all 3 proteins are located on the thylakoid membrane, and interactome studies indicate that they might associate with chloroplast CCM components. A single mutant defective in BST3 has near-normal growth on low CO2, indicating that the 3 bestrophin-like proteins may have redundant functions. Therefore, an RNA interference (RNAi) approach was adopted to reduce the expression of all 3 genes at once. RNAi mutants with reduced expression of BST1-3 were unable to grow at low CO2 concentrations, exhibited a reduced affinity to inorganic carbon (Ci) compared with the wild-type cells, and showed reduced Ci uptake. We propose that these bestrophin-like proteins are essential components of the CCM that deliver HCO3- accumulated in the chloroplast stroma to CAH3 inside the thylakoid lumen.


Assuntos
Dióxido de Carbono/metabolismo , Carbonatos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Canais Iônicos/biossíntese , Proteínas de Plantas/biossíntese , Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Canais Iônicos/genética , Proteínas de Plantas/genética , Tilacoides/genética
9.
Plant Physiol ; 171(1): 280-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993617

RESUMO

Carbonic anhydrases (CAs) are zinc metalloenzymes that interconvert CO2 and HCO3 (-) In plants, both α- and ß-type CAs are present. We hypothesize that cytoplasmic ßCAs are required to modulate inorganic carbon forms needed in leaf cells for carbon-requiring reactions such as photosynthesis and amino acid biosynthesis. In this report, we present evidence that ßCA2 and ßCA4 are the two most abundant cytoplasmic CAs in Arabidopsis (Arabidopsis thaliana) leaves. Previously, ßCA4 was reported to be localized to the plasma membrane, but here, we show that two forms of ßCA4 are expressed in a tissue-specific manner and that the two proteins encoded by ßCA4 localize to two different regions of the cell. Comparing transfer DNA knockout lines with wild-type plants, there was no reduction in the growth rates of the single mutants, ßca2 and ßca4 However, the growth rate of the double mutant, ßca2ßca4, was reduced significantly when grown at 200 µL L(-1) CO2 The reduction in growth of the double mutant was not linked to a reduction in photosynthetic rate. The amino acid content of leaves from the double mutant showed marked reduction in aspartate when compared with the wild type and the single mutants. This suggests the cytoplasmic CAs play an important but not previously appreciated role in amino acid biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Citoplasma/enzimologia , Folhas de Planta/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Anidrases Carbônicas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação , Fotossíntese , Folhas de Planta/genética , Plantas Geneticamente Modificadas
10.
J Exp Bot ; 68(14): 3879-3890, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633328

RESUMO

The supply of inorganic carbon (Ci) at the site of fixation by Rubisco is a key parameter for efficient CO2 fixation in aquatic organisms including the green alga, Chlamydomonas reinhardtii. Chlamydomonas reinhardtii cells, when grown on limiting CO2, have a CO2-concentrating mechanism (CCM) that functions to concentrate CO2 at the site of Rubisco. Proteins thought to be involved in inorganic carbon uptake have been identified and localized to the plasma membrane or chloroplast envelope. However, current CCM models suggest that additional molecular components are involved in Ci uptake. In this study, the gene Cia8 was identified in an insertional mutagenesis screen and characterized. The protein encoded by Cia8 belongs to the sodium bile acid symporter subfamily. Transcript levels for this gene were significantly up-regulated when the cells were grown on low CO2. The cia8 mutant exhibited reduced growth and reduced affinity for Ci when grown in limiting CO2 conditions. Prediction programs localize this protein to the chloroplast. Ci uptake and the photosynthetic rate, particularly at high external pH, were reduced in the mutant. The results are consistent with the model that CIA8 is involved in Ci uptake in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Fotossíntese , Proteínas de Algas/metabolismo , Compostos Inorgânicos de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Regulação para Cima
11.
Photosynth Res ; 121(2-3): 107-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24861895

RESUMO

The articles in this special issue of Photosynthesis Research arose from the presentations given at the Eighth International Symposium on Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms held from May 27 to June 1, 2013 in New Orleans, Louisiana USA. The meeting covered all the aspects of CO2 concentrating mechanisms (CCMs) present in photosynthetic bacteria, microalgae and macrophytes, and spanned disciplines from the molecular biology of CCMs to the importance of CCMs in aquatic ecosystems. The publications in this special issue represent our current understanding of CCMs and highlight recent advances in the field. The influences of CCMs on algal biofuel production as well as recent efforts to use the CCM to improve crop plants are also explored.


Assuntos
Fotossíntese , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Microalgas/metabolismo
12.
Photosynth Res ; 121(2-3): 201-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24752528

RESUMO

Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
13.
Photosynth Res ; 121(2-3): 159-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24752527

RESUMO

The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 (-), the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed.


Assuntos
Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Genoma de Planta/genética
15.
Front Mol Biosci ; 11: 1267046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455761

RESUMO

Introduction: Plants have many genes encoding both alpha and beta type carbonic anhydrases. Arabidopsis has eight alpha type and six beta type carbonic anhydrase genes. Individual carbonic anhydrases are localized to specific compartments within the plant cell. In this study, we investigate the roles of αCA2 and ßCA4.1 in the growth of the plant Arabidopsis thaliana under different CO2 regimes. Methods: Here, we identified the intracellular location of αCA2 and ßCA4.1 by linking the coding region of each gene to a fluorescent tag. Tissue expression was determined by investigating GUS expression driven by the αCA2 and ßCA4.1 promoters. Finally, the role of these proteins in plant growth and photosynthesis was tested in plants with T-DNA insertions in the αCA2 and ßCA4 genes. Results: Fluorescently tagged proteins showed that αCA2 is localized to the cell wall and ßCA4.1 to the plasma membrane in plant leaves. Both proteins were expressed in roots and shoots. Plants missing either αCA2 or ßCA4 did not show any growth defects under the conditions tested in this study. However, if both αCA2 and ßCA4 were disrupted, plants had a significantly smaller above- ground fresh weight and rosette area than Wild Type (WT) plants when grown at 200 µL L-1 CO2 but not at 400 and 1,000 µL L-1 CO2. Growth of the double mutant plants at 200 µL L-1 CO2 was restoredif either αCA2 or ßCA4.1 was transformed back into the double mutant plants. Discussion: Both the cell wall and plasma membrane CAs, αCA2 and ßCA4.1 had to be knocked down to produce an effect on Arabidopsis growth and only when grown in a CO2 concentration that was significantly below ambient. This indicates that αCA2 and ßCA4.1 have overlapping functions since the growth of lines where only one of these CAs was knocked down was indistinguishable from WT growth. The growth results and cellular locations of the two CAs suggest that together, αCA2 and ßCA4.1 play an important role in the delivery of CO2 and HCO3 - to the plant cell.

16.
Photosynth Res ; 117(1-3): 121-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23771683

RESUMO

This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Carbono/farmacologia , Oxigênio/farmacologia , Processos Fotoquímicos/efeitos dos fármacos , Plantas/metabolismo , Respiração Celular/efeitos dos fármacos , Plantas/efeitos dos fármacos
17.
Plant Cell ; 22(9): 3105-17, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20870960

RESUMO

Aquatic photosynthetic organisms can modulate their photosynthesis to acclimate to CO2-limiting stress by inducing a carbon-concentrating mechanism (CCM) that includes carbonic anhydrases and inorganic carbon (Ci) transporters. However, to date, Ci-specific transporters have not been well characterized in eukaryotic algae. Previously, a Chlamydomonas reinhardtii mutant (lcr1) was identified that was missing a Myb transcription factor. This mutant had reduced light-dependent CO2 gas exchange (LCE) activity when grown under CO2-limiting conditions and did not induce the CAH1 gene encoding a periplasmic carbonic anhydrase, as well as two as yet uncharacterized genes, LCI1 and LCI6. In this study, LCI1 was placed under the control of the nitrate reductase promoter, allowing for the induction of LCI1 expression by nitrate in the absence of other CCM components. When the expression of LCI1 was induced in the lcr1 mutant under CO2-enriched conditions, the cells showed an increase in LCE activity, internal Ci accumulation, and photosynthetic affinity for Ci. From experiments using indirect immunofluorescence, LCI1-green fluorescent protein fusions, and cell fractionation procedures, it appears that LCI1 is mainly localized to the plasma membrane. These results provide strong evidence that LCI1 may contribute to the CCM as a component of the Ci transport machinery in the plasma membrane.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/enzimologia , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Fotossíntese , Proteínas de Plantas/genética
18.
Plant Physiol ; 156(2): 884-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21527423

RESUMO

Chlamydomonas reinhardtii possesses a CO(2)-concentrating mechanism (CCM) that allows the alga to grow at low CO(2) concentrations. One common feature seen in photosynthetic organisms possessing a CCM is the tight packaging of Rubisco within the cell. In many eukaryotic algae, Rubisco is localized to the pyrenoid, an electron-dense structure within the chloroplast. In order to identify genes required for a functional CCM, insertional Bleomycin resistance (Ble(R)) mutants were generated and screened for growth on minimal medium under high CO(2) conditions (5% CO(2) in air) but only slow or no growth under very low CO(2) conditions (0.01% CO(2) in air). One mutant identified from this screen was named cia6. Physiological studies established that cia6 grows poorly on low levels of CO(2) and has an impaired ability to accumulate inorganic carbon. The inserted Ble(R) disrupted a gene encoding a protein with sequence similarity to proteins containing SET domain methyltransferase, although experiments using overexpressed CIA6 failed to demonstrate the methyltransferase activity. Electron microscopy revealed that the pyrenoid of cia6 mutant cells is highly disorganized. Complementation of the mutant restored the pyrenoid, the ability to grow under low-CO(2) conditions, and the ability to concentrate inorganic carbon. Quantitative reverse transcription-polymerase chain reaction data from a low-CO(2) induction time-course experiment demonstrated that the up-regulation of several CCM components is slower in cia6 compared with the wild type. This slow induction was further confirmed at the protein level using western blots. These results indicated that CIA6 is required for the formation of the pyrenoid and further supported the notion that the pyrenoid is required for a functional CCM in C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Aclimatação/efeitos dos fármacos , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/ultraestrutura , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Evolução Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Loci Gênicos/genética , Cinética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Peso Molecular , Mutagênese Insercional/efeitos dos fármacos , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Ribulose-Bifosfato Carboxilase/metabolismo , Fatores de Tempo
19.
Plants (Basel) ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890517

RESUMO

In recent years, researchers have attempted to improve photosynthesis by introducing components from cyanobacterial and algal CO2-concentrating mechanisms (CCMs) into terrestrial C3 plants. For these attempts to succeed, we need to understand the CCM components in more detail, especially carbonic anhydrase (CA) and bicarbonate (HCO3−) transporters. Heterologous complementation systems capable of detecting carbonic anhydrase activity (i.e., catalysis of the pH-dependent interconversion between CO2 and HCO3−) or active HCO3− transport can be of great value in the process of introducing CCM components into terrestrial C3 plants. In this study, we generated a Saccharomyces cerevisiae CA knock-out (ΔNCE103 or ΔCA) that has a high-CO2-dependent phenotype (5% (v/v) CO2 in air). CAs produce HCO3− for anaplerotic pathways in S. cerevisiae; therefore, the unavailability of HCO3− for neutral lipid biosynthesis is a limitation for the growth of ΔCA in ambient levels of CO2 (0.04% (v/v) CO2 in air). ΔCA can be complemented for growth at ambient levels of CO2 by expressing a CA from human red blood cells. ΔCA was also successfully complemented for growth at ambient levels of CO2 through the expression of CAs from Chlamydomonas reinhardtii and Arabidopsis thaliana. The ΔCA strain is also useful for investigating the activity of modified CAs, allowing for quick screening of modified CAs before putting them into the plants. CA activity in the complemented ΔCA strains can be probed using the Wilbur−Anderson assay and by isotope exchange membrane-inlet mass spectrometry (MIMS). Other potential uses for this new ΔCA-based screening system are also discussed.

20.
Photosynth Res ; 109(1-3): 133-49, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21365258

RESUMO

Aquatic photosynthetic organisms, such as the green alga Chlamydomonas reinhardtii, respond to low CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Carbonic anhydrases (CAs) are important components of the CCM. CAs are zinc-containing metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). In C. reinhardtii, there are at least 12 genes that encode CA isoforms, including three alpha, six beta, and three gamma or gamma-like CAs. The expression of the three alpha and six beta genes has been measured from cells grown on elevated CO(2) (having no active CCM) versus cells growing on low levels of CO(2) (with an active CCM) using northern blots, differential hybridization to DNA chips and quantitative RT-PCR. Recent RNA-seq profiles add to our knowledge of the expression of all of the CA genes. In addition, protein content for some of the CA isoforms was estimated using antibodies corresponding to the specific CA isoforms: CAH1/2, CAH3, CAH4/5, CAH6, and CAH7. The intracellular location of each of the CA isoforms was elucidated using immunolocalization and cell fractionation techniques. Combining these results with previous studies using CA mutant strains, we will discuss possible physiological roles of the CA isoforms concentrating on how these CAs might contribute to the acquisition and retention of CO(2) in C. reinhardtii.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/fisiologia , Fotossíntese/fisiologia , Evolução Biológica , Anidrases Carbônicas/genética , Chlamydomonas reinhardtii/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA