Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(4): e1010099, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446841

RESUMO

East Coast fever, a tick-borne cattle disease caused by the Theileria parva parasite, is among the biggest natural killers of cattle in East Africa, leading to over 1 million deaths annually. Here we report on the genetic analysis of a cohort of Bos indicus (Boran) cattle demonstrating heritable tolerance to infection with T. parva (h2 = 0.65, s.e. 0.57). Through a linkage analysis we identify a 6 Mb genomic region on bovine chromosome 15 that is significantly associated with survival outcome following T. parva exposure. Testing this locus in an independent cohort of animals replicates this association with survival following T. parva infection. A stop gained variant in a paralogue of the FAF1 gene in this region was found to be highly associated with survival across both related and unrelated animals, with only one of the 20 homozygote carriers (T/T) of this change succumbing to the disease in contrast to 44 out of 97 animals homozygote for the reference allele (C/C). Consequently, we present a genetic locus linked to tolerance of one of Africa's most important cattle diseases, raising the promise of marker-assisted selection for cattle that are less susceptible to infection by T. parva.


Assuntos
Doenças dos Bovinos , Theileria parva , Theileria , Theileriose , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Animais , Proteínas Reguladoras de Apoptose/genética , Bovinos , Doenças dos Bovinos/genética , Humanos , Theileria/genética , Theileria parva/genética , Theileriose/genética , Theileriose/parasitologia
2.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507950

RESUMO

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Protozoárias/imunologia , Theileria parva/fisiologia , Theileriose/imunologia , Animais , Apresentação de Antígeno , Antígenos de Protozoários/imunologia , Bovinos , Células Cultivadas , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe II , Ativação Linfocitária , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T
3.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30323022

RESUMO

There is established evidence that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasite Theileria parva However, the mechanism by which the specific CD8+ T cells kill parasitized cells is not understood. Although the predominant pathway used by human and murine CD8+ T cells to kill pathogen-infected cells is granule exocytosis, involving the release of perforin and granzyme B, there is to date a lack of published information on the biological activities of bovine granzyme B. The present study set out to define the functional activities of bovine granzyme B and determine its role in mediating the killing of T. parva-parasitized cells. DNA constructs encoding functional and nonfunctional forms of bovine granzyme B were produced, and the proteins expressed in Cos-7 cells were used to establish an enzymatic assay to detect and quantify the expression of functional granzyme B protein. Using this assay, the levels of killing of different T. parva-specific CD8+ T cell clones were found to be significantly correlated with the levels of granzyme B protein but not the levels of mRNA transcript expression. Experiments using inhibitors specific for perforin and granzyme B confirmed that CD8+ T cell killing of parasitized cells is dependent on granule exocytosis and, specifically, granzyme B. Further studies showed that the granzyme B-mediated death of parasitized cells is independent of caspases and that granzyme B activates the proapoptotic molecule Bid.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxinas/metabolismo , Granzimas/metabolismo , Theileria parva/imunologia , Theileriose/imunologia , Animais , Bovinos , Doenças dos Bovinos/imunologia , Sobrevivência Celular , Células Cultivadas
4.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201699

RESUMO

Superantigens (SAgs) represent a diverse family of bacterial toxins that induce Vß-specific T cell proliferation associated with an array of important diseases in humans and animals, including mastitis of dairy cows. However, an understanding of the diversity and distribution of SAg genes among bovine Staphylococcus aureus strains and their role in the pathogenesis of mastitis is lacking. Population genomic analysis of 195 bovine S. aureus isolates representing 57 unique sequence types revealed that strains encode 2 to 13 distinct SAgs and that the majority of isolates contain 5 or more SAg genes. A genome-scale analysis of bovine reference strain RF122 revealed a complement of 11 predicted SAg genes, which were all expressed in vitro Detection of specific antibodies in convalescent cows suggests expression of 7 of 11 SAgs during natural S. aureus infection. We determined the Vß T cell activation profile for all functional SAgs encoded by RF122, revealing evidence for bovine host-specific activity among the recently identified RF122-encoded SAgs SElY and SElZ. Remarkably, we discovered that some strains have evolved the capacity to stimulate the entire T cell repertoire of cattle through an array of diverse SAgs, suggesting a key role in bovine immune evasion.


Assuntos
Antígenos de Bactérias/imunologia , Ativação Linfocitária , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Linfócitos T/imunologia , Animais , Bovinos , Proliferação de Células , Evasão da Resposta Imune , Mastite Bovina/patologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/veterinária
5.
Immunogenetics ; 70(9): 585-597, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947943

RESUMO

Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.


Assuntos
Granzimas/genética , Linfócitos/enzimologia , Filogenia , Animais , Bovinos , Mapeamento Cromossômico , Granzimas/química , Granzimas/metabolismo , Ativação Linfocitária , Anotação de Sequência Molecular , Perforina/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/genética
6.
Parasitology ; 145(11): 1430-1439, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729680

RESUMO

The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Variação Genética , Theileria parva/genética , Theileria parva/imunologia , Alelos , Animais , Antígenos de Protozoários/genética , Sequência de Bases , Búfalos , Linhagem Celular , Epitopos/imunologia
7.
J Gen Virol ; 98(7): 1843-1854, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671533

RESUMO

In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Doenças dos Bovinos/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/genética , Proteínas Imediatamente Precoces/imunologia , Animais , Antígenos Virais/genética , Linfócitos T CD8-Positivos/virologia , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/virologia , Genes Precoces , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/metabolismo , Proteínas Imediatamente Precoces/genética
8.
Immunogenetics ; 68(10): 765-781, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27516207

RESUMO

The major histocompatibility complex (MHC) region contains many genes that are key regulators of both innate and adaptive immunity including the polymorphic MHCI and MHCII genes. Consequently, the characterisation of the repertoire of MHC genes is critical to understanding the variation that determines the nature of immune responses. Our current knowledge of the bovine MHCI repertoire is limited with only the Holstein-Friesian breed having been studied in any depth. Traditional methods of MHCI genotyping are of low resolution and laborious and this has been a major impediment to a more comprehensive analysis of the MHCI repertoire of other cattle breeds. Next-generation sequencing (NGS) technologies have been used to enable high throughput and much higher resolution MHCI typing in a number of species. In this study we have developed a MiSeq platform approach and requisite bioinformatics pipeline to facilitate typing of bovine MHCI repertoires. The method was validated initially on a cohort of Holstein-Friesian animals and then demonstrated to enable characterisation of MHCI repertoires in African cattle breeds, for which there was limited or no available data. During the course of these studies we identified >140 novel classical MHCI genes and defined 62 novel MHCI haplotypes, dramatically expanding the known bovine MHCI repertoire.


Assuntos
Bovinos/genética , Deriva Genética , Variação Genética/genética , Genética Populacional , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe I/genética , Animais , Biologia Computacional , Genótipo , Reação em Cadeia da Polimerase
9.
J Immunol ; 192(8): 3868-80, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639352

RESUMO

The NKp46 receptor demonstrates a high degree of lineage specificity, being expressed almost exclusively in NK cells. Previous studies have demonstrated NKp46 expression by T cells, but NKp46+ CD3+ cells are rare and almost universally associated with NKp46 acquisition by T cells following stimulation. In this study we demonstrate the existence of a population of NKp46+ CD3+ cells resident in normal bovine PBMCs that includes cells of both the αß TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+ CD3+ cells express transcripts for a broad repertoire of both NKRs and TCRs and also the CD3ζ, DAP10, and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+ CD3+ cells confirm that NKp46, CD16, and CD3 signaling pathways are all functionally competent and capable of mediating/redirecting cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+ CD3+ cells exhibit cytotoxic activity against autologous Theileria parva-infected cells in vitro, and during in vivo challenge with this parasite an expansion of NKp46+ CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results in this study identify and describe a novel nonconventional NKp46+ CD3+ T cell subset that is phenotypically and functionally distinct from conventional NK and T cells. The ability to exploit both NKRs and TCRs suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses.


Assuntos
Complexo CD3/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Fenótipo , Subpopulações de Linfócitos T/metabolismo , Animais , Complexo CD3/genética , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Citotoxicidade Imunológica , Expressão Gênica , Imunofenotipagem , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Células Matadoras Naturais/genética , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Theileria/imunologia , Theileriose/genética , Theileriose/imunologia , Theileriose/metabolismo
11.
BMC Genomics ; 15: 994, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25408163

RESUMO

BACKGROUND: The TRA/TRD locus contains the genes for V(D)J somatic rearrangement of TRA and TRD chains expressed by αß and γδ T cells respectively. Previous studies have demonstrated that the bovine TRA/TRD locus contains an exceptionally large number of TRAV/TRDV genes. In this study we combine genomic and transcript analysis to provide insights into the evolutionary development of the bovine TRA/TRD locus and the remarkable TRAV/TRDV gene repertoire. RESULTS: Annotation of the UMD3.1 assembly identified 371 TRAV/TRDV genes (distributed in 42 subgroups), 3 TRDJ, 6 TRDD, 62 TRAJ and single TRAC and TRDC genes, most of which were located within a 3.5 Mb region of chromosome 10. Most of the TRAV/TRDV subgroups have multiple members and several have undergone dramatic expansion, most notably TRDV1 (60 genes). Wide variation in the proportion of pseudogenes within individual subgroups, suggest that differential 'birth' and 'death' rates have been used to form a functional bovine TRAV/TRDV repertoire which is phylogenetically distinct from that of humans and mice. The expansion of the bovine TRAV/TRDV gene repertoire has predominantly been achieved through a complex series of homology unit (regions of DNA containing multiple gene) replications. Frequent co-localisation within homology units of genes from subgroups with low and high pseudogene proportions suggest that replication of homology units driven by evolutionary selection for the former may have led to a 'collateral' expansion of the latter. Transcript analysis was used to define the TRAV/TRDV subgroups available for recombination of TRA and TRD chains and demonstrated preferential usage of different subgroups by the expressed TRA and TRD repertoires, indicating that TRA and TRD selection have had distinct impacts on the evolution of the TRAV/TRDV repertoire. CONCLUSION: Both TRA and TRD selection have contributed to the evolution of the bovine TRAV/TRDV repertoire. However, our data suggest that due to homology unit duplication TRD selection for TRDV1 subgroup expansion may have substantially contributed to the genomic expansion of several TRAV subgroups. Such data demonstrate how integration of genomic and transcript data can provide a more nuanced appreciation of the evolutionary dynamics that have led to the dramatically expanded bovine TRAV/TRDV repertoire.


Assuntos
Evolução Molecular , Genômica , Filogenia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Camundongos , Família Multigênica
12.
BMC Vet Res ; 10: 245, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25358526

RESUMO

BACKGROUND: Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by bone marrow trilineage hypoplasia, mediated by ingestion of alloantibodies in colostrum. Suspected subclinical forms of BNP have been reported, suggesting that observed clinical cases may not represent the full extent of the disease. However to date there are no objective data available on the incidence of subclinical disease or its temporal distribution. This study aimed to 1) ascertain whether subclinical BNP occurs and, if so, to determine the incidence on an affected farm and 2) determine whether there is evidence of temporal clustering of BNP cases on this farm. To achieve these aims, haematological screening of calves born on the farm during one calving season was carried out, utilising blood samples collected at defined ages. These data were then analysed in comparison to data from both known BNP-free control animals and histopathologically confirmed BNP cases. An ordinal logistic regression model was used to create a composite haematology score to predict the probabilities of calves being normal, based on their haematology measurements at 10-14 days old. RESULTS: This study revealed that 15% (21 of 139) of the clinically normal calves on this farm had profoundly abnormal haematology (<5% chance of being normal) and could be defined as affected by subclinical BNP. Together with clinical BNP cases, this gave the study farm a BNP incidence of 18%. Calves with BNP were found to be distributed throughout the calving period, with no clustering, and no significant differences in the date of birth of cases or subclinical cases were found compared to the rest of the calves. This study did not find any evidence of increased mortality or increased time from birth to sale in subclinical BNP calves but, as the study only involved a single farm and adverse effects may be determined by other inter-current diseases it remains possible that subclinical BNP has a detrimental impact on the health and productivity of calves under certain circumstances. CONCLUSIONS: Subclinical BNP was found to occur at a high incidence in a herd of cattle with fatal cases of BNP.


Assuntos
Animais Recém-Nascidos , Doenças dos Bovinos/epidemiologia , Pancitopenia/veterinária , Vacinas Virais/efeitos adversos , Animais , Antígenos , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/mortalidade , Regulação da Expressão Gênica/imunologia , Predisposição Genética para Doença , Isoanticorpos , Vacinação/veterinária , Vacinas Virais/imunologia
13.
PLoS Pathog ; 7(10): e1002271, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022262

RESUMO

Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including Vß-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct Vß activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Enterotoxinas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/imunologia , Pneumonia Estafilocócica/microbiologia , Superantígenos/genética , Animais , Bovinos , Infecções Comunitárias Adquiridas/epidemiologia , Evolução Molecular , Variação Genética , Humanos , Sequências Repetitivas Dispersas , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Dados de Sequência Molecular , Filogenia , Pneumonia Estafilocócica/epidemiologia , Coelhos , Fatores de Virulência/genética
14.
J Immunol ; 187(11): 5910-20, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22058411

RESUMO

Polymorphism of immunodominant CD8(+) T cell epitopes can facilitate escape from immune recognition of pathogens, leading to strain-specific immunity. In this study, we examined the TCR ß-chain (TRB) diversity of the CD8(+) T cell responses of cattle against two immunodominant epitopes from Theileria parva (Tp1(214-224) and Tp2(49-59)) and investigated the role of TCR recognition and MHC binding in determining differential recognition of a series of natural variants of the highly polymorphic Tp2(49-59) epitope by CD8(+) T cell clones of defined TRB genotype. Our results show that both Tp1(214-224) and Tp2(49-59) elicited CD8(+) T cell responses using diverse TRB repertoires that showed a high level of stability following repeated pathogenic challenge over a 3-y period. Analysis of single-alanine substituted versions of the Tp2(49-59) peptide demonstrated that Tp2(49-59)-specific clonotypes had a broad range of fine specificities for the epitope. Despite this diversity, all natural variants exhibited partial or total escape from immune recognition, which was predominantly due to abrogation of TCR recognition, with mutation resulting in loss of the lysine residue at P8, playing a particularly dominant role in escape. The levels of heterozygosity in individual Tp2(49-59) residues correlated closely with loss of immune recognition, suggesting that immune selection has contributed to epitope polymorphism.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica/imunologia , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Theileria parva/imunologia , Animais , Bovinos , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Tolerância Imunológica/genética , Epitopos Imunodominantes/genética , Ativação Linfocitária/imunologia , Polimorfismo Genético , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Theileria parva/genética , Theileriose/genética , Theileriose/imunologia
15.
PLoS Pathog ; 6(10): e1001149, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20976198

RESUMO

T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Epitopos Imunodominantes/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Theileria parva/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Bovinos , Cristalografia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Camundongos , Modelos Moleculares , Ligação Proteica/imunologia , Ligação Proteica/fisiologia , Conformação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo
16.
Nature ; 439(7078): 843-6, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16357869

RESUMO

Human and livestock diseases can be difficult to control where infection persists in wildlife populations. For three decades, European badgers (Meles meles) have been culled by the British government in a series of attempts to limit the spread of Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), to cattle. Despite these efforts, the incidence of TB in cattle has risen consistently, re-emerging as a primary concern for Britain's cattle industry. Recently, badger culling has attracted controversy because experimental studies have reached contrasting conclusions (albeit using different protocols), with culled areas showing either markedly reduced or increased incidence of TB in cattle. This has confused attempts to develop a science-based management policy. Here we use data from a large-scale, randomized field experiment to help resolve these apparent differences. We show that, as carried out in this experiment, culling reduces cattle TB incidence in the areas that are culled, but increases incidence in adjoining areas. These findings are biologically consistent with previous studies but will present challenges for policy development.


Assuntos
Controle de Doenças Transmissíveis/métodos , Mustelidae , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Animais Selvagens/microbiologia , Bovinos , Feminino , Incidência , Mustelidae/microbiologia , Mycobacterium bovis , Distribuição Aleatória , Tuberculose Bovina/transmissão , Reino Unido/epidemiologia , Zoonoses/microbiologia
17.
Vet Immunol Immunopathol ; 246: 110392, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217363

RESUMO

In recent years, molecular studies have provided detailed information on the bovine T cell receptor (TCR) variable gene repertoire, both in resting T cells and during T cell responses. However, studies of the biological function of the receptor have been hampered by a lack of reagents that recognise the protein. Herein, we describe the characterisation of two antibodies (IL-A47 and IL-A98) that recognise T cells expressing the TCR VB20 subfamily of BV genes. These antibodies each recognise a small subset of αß T cells in PBMC, including subsets of both CD4 and CD8 T cells. One of the antibodies (IL-A98) recognises a smaller subset of cells within the IL-A47+ population. When tested on a panel of T cell clones expressing different αß TCR subfamilies of ß chain genes, IL-A47 was found to react only with clones expressing the BV20 subfamily, which in cattle has undergone expansion due to gene duplication; IL-A98 reacted with a subset of the BV20 subfamily members. IL-A47 was shown to profoundly inhibit recognition of target cells by cytotoxic T cell clones, an effect that was mediated via the effector T cell rather than the target cells.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , Animais , Anticorpos Monoclonais , Linfócitos T CD8-Positivos , Bovinos , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
18.
Infect Immun ; 79(5): 2059-69, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21300773

RESUMO

Although parasite strain-restricted CD8 T cell responses have been described for several protozoa, the precise role of antigenic variability in immunity is poorly understood. The tick-borne protozoan parasite Theileria annulata infects leukocytes and causes an acute, often fatal lymphoproliferative disease in cattle. Building on previous evidence of strain-restricted CD8 T cell responses to T. annulata, this study set out to identify and characterize the variability of the target antigens. Three antigens were identified by screening expressed parasite cDNAs with specific CD8 T cell lines. In cattle expressing the A10 class I major histocompatibility complex haplotype, A10-restricted CD8 T cell responses were shown to be focused entirely on a single dominant epitope in one of these antigens (Ta9). Sequencing of the Ta9 gene from field isolates of T. annulata demonstrated extensive sequence divergence, resulting in amino acid polymorphism within the A10-restricted epitope and a second A14-restricted epitope. Statistical analysis of the allelic sequences revealed evidence of positive selection for amino acid substitutions within the region encoding the CD8 T cell epitopes. Sequence differences in the A10-restricted epitope were shown to result in differential recognition by individual CD8 T cell clones, while clones also differed in their ability to recognize different alleles. Moreover, the representation of these clonal specificities within the responding CD8 T cell populations differed between animals. As well as providing an explanation for incomplete protection observed after heterologous parasite challenge of vaccinated cattle, these results have important implications for the choice of antigens for the development of novel subunit vaccines.


Assuntos
Antígenos de Protozoários/genética , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Theileria annulata/genética , Theileria annulata/imunologia , Animais , Antígenos de Protozoários/imunologia , Sequência de Bases , Bovinos , Separação Celular , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Theileriose/genética , Theileriose/imunologia
20.
Vet Res ; 42: 119, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22182243

RESUMO

Continuously growing cell lines infected with the protozoan parasite Theileria annulata can readily be established by in vitro infection of leukocytes with the sporozoite stage of the parasite. The aim of the current study was to determine whether such transformed cell lines could be used as antigen presenting cells to analyse the antigenic specificity of bovine CD8 T cell responses to viral infections. Bovine herpes virus 1 (BHV-1), which is known to induce CD8 T cell responses, was used as a model. T. annulata- transformed cells were shown to express high levels of CD40 and CD80 and were susceptible to infection with BHV-1, vaccinia and canarypox viruses. The capacity of the cells to generate antigen-specific CD8 T cell lines was initially validated using a recombinant canarypox virus expressing a defined immunodominant T. parva antigen (Tp1). Autologous T. annulata-transformed cells infected with BHV-1 were then used successfully to generate specific CD8 T cell lines and clones from memory T cell populations of BHV-1-immune animals. These lines were BHV-1-specific and class I MHC-restricted. In contrast to previous studies, which reported recognition of the glycoproteins gB and gD, the CD8 T cell lines generated in this study did not recognise these glycoproteins. Given the ease with which T. annulata-transformed cell lines can be established and maintained in vitro and their susceptibility to infection with poxvirus vectors, these cell lines offer a convenient and efficient in vitro system to analyse the fine specificity of virus-specific CD8 T cell responses in cattle.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/imunologia , Rinotraqueíte Infecciosa Bovina/imunologia , Theileria annulata/imunologia , Animais , Bovinos , Linhagem Celular Transformada , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Rinotraqueíte Infecciosa Bovina/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA