Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(16): 2789-2804, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29771332

RESUMO

Myotonic dystrophy type 1 (DM1) is a multi-systemic disease resulting in severe muscle weakening and wasting. DM1 is caused by expansion of CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. We have developed an inducible, skeletal muscle-specific mouse model of DM1 (CUG960) that expresses 960 CUG repeat-expressing animals (CUG960) in the context of human DMPK exons 11-15. CUG960 RNA-expressing mice induced at postnatal day 1, as well as adult-onset animals, show clear, measurable muscle wasting accompanied by severe histological defects including central myonuclei, reduced fiber cross-sectional area, increased percentage of oxidative myofibers, the presence of nuclear RNA foci that colocalize with Mbnl1 protein, and increased Celf1 protein in severely affected muscles. Importantly, muscle loss, histological abnormalities and RNA foci are reversible, demonstrating recovery upon removal of toxic RNA. RNA-seq and protein array analysis indicate that the balance between anabolic and catabolic pathways that normally regulate muscle mass may be disrupted by deregulation of platelet derived growth factor receptor ß signaling and the PI3K/AKT pathways, along with prolonged activation of AMP-activated protein kinase α signaling. Similar changes were detected in DM1 skeletal muscle compared with unaffected controls. The mouse model presented in this paper shows progressive skeletal muscle wasting and has been used to identify potential molecular mechanisms underlying skeletal muscle loss. The reversibility of the phenotype establishes a baseline response for testing therapeutic approaches.


Assuntos
Debilidade Muscular/genética , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Animais , Sequência de Bases , Proteínas CELF1 , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Humanos , Camundongos , Debilidade Muscular/patologia , Músculo Esquelético/fisiopatologia , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA , Expansão das Repetições de Trinucleotídeos
2.
Hum Genet ; 136(9): 1247-1263, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28484853

RESUMO

An emerging class of long noncoding RNAs (lncRNAs) function as decoy molecules that bind and sequester proteins thereby inhibiting their normal functions. Titration of proteins by lncRNAs has wide-ranging effects affecting nearly all steps in gene expression. While decoy lncRNAs play a role in normal physiology, RNAs expressed from alleles containing nucleotide repeat expansions can be pathogenic due to protein sequestration resulting in disruption of normal functions. This review focuses on commonalities between decoy lncRNAs that regulate gene expression by competitive inhibition of protein function through sequestration and specific examples of nucleotide repeat expansion disorders mediated by toxic RNA that sequesters RNA-binding proteins and impedes their normal functions. Understanding how noncoding RNAs compete with various RNA and DNA molecules for binding of regulatory proteins will provide insight into how similar mechanisms contribute to disease pathogenesis.


Assuntos
Expansão das Repetições de DNA , Doenças Genéticas Inatas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Genetics ; 195(3): 927-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24026097

RESUMO

wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Genes de Insetos , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/genética , Animais , Mapeamento Cromossômico , Sequência Conservada , Drosophila melanogaster/fisiologia , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Masculino , Mutação , Junção Neuromuscular/fisiologia , Fenótipo , Interferência de RNA , Asas de Animais/crescimento & desenvolvimento
4.
Methods Mol Biol ; 798: 127-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22130835

RESUMO

The Drosophila system has been invaluable in providing important insights into mesoderm specification, muscle specification, myoblast fusion, muscle differentiation, and myofibril assembly. Here, we present a series of Drosophila protocols that enable the researcher to visualize muscle precursors and differentiated muscles, at all stages of development. In doing so, we also highlight the variety of techniques that are used to create these findings. These protocols are directly used for the Drosophila system, and are provided with explanatory detail to enable the researcher to apply them to other systems.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Genes Reporter/genética , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Larva/metabolismo , Microscopia de Fluorescência , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA