RESUMO
X-linked adrenoleukodystrophy (ALD) is the most common leukodystrophy with a birth incidence of 1:14,700 live births. The disease is caused by mutations in ABCD1 and characterized by very long-chain fatty acids (VLCFA) accumulation. In childhood, male patients are at high-risk to develop adrenal insufficiency and/or cerebral demyelination. Timely diagnosis is essential. Untreated adrenal insufficiency can be life-threatening and hematopoietic stem cell transplantation is curative for cerebral ALD provided the procedure is performed in an early stage of the disease. For this reason, ALD is being added to an increasing number of newborn screening programs. ALD newborn screening involves the quantification of C26:0-lysoPC in dried blood spots which requires a dedicated method. C26:0-carnitine, that was recently identified as a potential new biomarker for ALD, has the advantage that it can be added as one more analyte to the routine analysis of amino acids and acylcarnitines already in use. The first objective of this study was a comparison of the sensitivity of C26:0-carnitine and C26:0-lysoPC in dried blood spots from control and ALD newborns both in a case-control study and in newborns included in the New York State screening program. While C26:0-lysoPC was elevated in all ALD newborns, C26:0-carnitine was elevated only in 83%. Therefore, C26:0-carnitine is not a suitable biomarker to use in ALD newborn screen. In women with ALD, plasma VLCFA analysis results in a false negative result in approximately 15-20% of cases. The second objective of this study was to compare plasma VLCFA analysis with C26:0-carnitine and C26:0-lysoPC in dried blood spots of women with ALD. Our results show that C26:0-lysoPC was elevated in dried blood spots from all women with ALD, including from those with normal plasma C26:0 levels. This shows that C26:0-lysoPC is a better and more accurate biomarker for ALD than plasma VLCFA levels. We recommend that C26:0-lysoPC be added to the routine biochemical array of diagnostic tests for peroxisomal disorders.
Assuntos
Adrenoleucodistrofia/diagnóstico , Carnitina/análise , Teste em Amostras de Sangue Seco/métodos , Ácidos Graxos/sangue , Lisofosfatidilcolinas/análise , Triagem Neonatal/métodos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Países Baixos , New York , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Aicardi Goutières Syndrome (AGS) is a heritable interferonopathy associated with systemic autoinflammation causing interferon (IFN) elevation, central nervous system calcifications, leukodystrophy and severe neurologic sequelae. An infant with TREX1 mutations was recently found to have abnormal C26:0 lysophosphatidylcholine (C26:0 Lyso-PC) in a newborn screening platform for X-linked adrenoleukodystrophy, prompting analysis of this analyte in retrospectively collected samples from individuals affected by AGS. METHODS: In this study, we explored C26:0 Lyso-PC levels and IFN signatures in newborn blood spots and post-natal blood samples in 19 children with a molecular and clinical diagnosis of AGS and in the blood spots of 22 healthy newborns. We used Nanostring nCounter™ for IFN-induced gene analysis and a high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS) newborn screening platform for C26:0 Lyso-PC analysis. RESULTS: Newborn screening cards from patients across six AGS associated genes were collected, with a median disease presentation of 2months. Thirteen out of 19 (68%) children with AGS had elevations of first tier C26:0 Lyso-PC (>0.4µM), that would have resulted in a second screen being performed in a two tier screening system for X-linked adrenoleukodystrophy (X-ALD). The median (95%CI) of first tier C26:0 Lyso-PC values in AGS individuals (0.43µM [0.37-0.48]) was higher than that seen in controls (0.21µM [0.21-0.21]), but lower than X-ALD individuals (0.72µM [0.59-0.84])(p<0.001). Fourteen of 19 children had elevated expression of IFN signaling on blood cards relative to controls (Sensitivity 73.7%, 95%CI 51-88%, Specificity 95%, 95% CI 78-99%) including an individual with delayed disease presentation (36months of age). All five AGS patients with negative IFN signature at birth had RNASEH2B mutations. Consistency of agreement between IFN signature in neonatal and post-natal samples was high (0.85). CONCLUSION: This suggests that inflammatory markers in AGS can be identified in the newborn period, before symptom onset. Additionally, since C26:0 Lyso-PC screening is currently used in X-ALD newborn screening panels, clinicians should be alert to the fact that AGS infants may present as false positives during X-ALD screening.
Assuntos
Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Interferons/sangue , Lisofosfatidilcolinas/sangue , Triagem Neonatal/métodos , Malformações do Sistema Nervoso/sangue , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Teste em Amostras de Sangue Seco/métodos , Exodesoxirribonucleases/genética , Feminino , Humanos , Lactente , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Interferons/genética , Masculino , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Fosfoproteínas/genética , Estudos Retrospectivos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem , Transcriptoma/imunologiaRESUMO
INTRODUCTION: Combined methylmalonic aciduria and homocystinuria, cobalamin C (cblC) type, is an inherited disorder of vitamin B(12) metabolism caused by mutations in MMACHC. CblC typically presents in the neonatal period with neurological deterioration, failure to thrive, cytopenias, and multisystem pathology including renal and hepatic dysfunction. Rarely, affected individuals present in adulthood with gait ataxia and cognitive decline. Treatment with hydroxocobalamin may ameliorate the clinical features of early-onset disease and prevent clinical late-onset disease. Propionic acidemia (PA), methylmalonic acidemia (MMA), and various disorders of cobalamin metabolism are characterized by elevated propionylcarnitine (C3) on newborn screening (NBS). Distinctions can be made between these disorders with secondary analyte testing. Elevated methionine is already routinely used as a NBS marker for cystathionine beta-synthase deficiency. We propose that low methionine may be useful as a secondary analyte for specific detection of cbl disorders among a larger pool of infants with elevated C3 on NBS. METHODS: Retrospective analysis of dried blood spot (DBS) data in patients with molecularly confirmed cblC disease. RESULTS: Nine out of ten patients with confirmed cblC born in New York between 2005 and 2008 had methionine below 13.4mumol/L on NBS. Elevated C3, elevated C3:C2 ratio, and low methionine were incorporated into a simple screening algorithm that can be used to improve the specificity of newborn screening programs and provide a specific and novel method of distinguishing cblC from other disorders of propionate metabolism prior to recall for confirmatory testing. CONCLUSIONS: It is anticipated that this algorithm will aid in early and specific detection of cobalamin C, D, and F diseases, with no additional expense to NBS laboratories screening for organic acidemias and classical homocystinuria.
Assuntos
Homocistinúria/complicações , Homocistinúria/diagnóstico , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Metionina , Triagem Neonatal , Vitamina B 12/metabolismo , Algoritmos , Carnitina/análogos & derivados , Carnitina/metabolismo , Demografia , Reações Falso-Positivas , Feminino , Seguimentos , Estudos de Associação Genética , Homocistinúria/genética , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/genética , Ácido Metilmalônico/metabolismo , New York , Propionatos/metabolismo , Encaminhamento e ConsultaRESUMO
OBJECTIVE: The aim of this study was to develop a newborn screening algorithm for Krabbe disease. DESIGN AND METHODS: We measured the galactocerebrosidase activity of 139,074 anonymous newborns, 56 known carriers, and 16 Krabbe patients using a tandem mass spectrometry method. The activities were converted to percentages of daily mean activity (%DMA), and the results from diseased and normal populations were used to establish cutoffs. RESULTS: The absolute activities for the newborns ranged from 0.17 to 355 micromol/L h (N=139,074) and activities for Krabbe-positive controls ranged from 0.08 to 0.48 micromol/L h (N=16, n=91 measurements) while activities for carriers ranged from 0.28 to 2.71 micromol/L h (N=56, n=72 measurements). Cutoffs were set based on results from Krabbe-positive and carrier controls and the newborn population distribution. CONCLUSIONS: The algorithm and cutoffs we propose provided 100% detection of all positive controls with 60/100,000 screen positive results predicted. In the course of this study, one anonymous newborn was predicted to have Krabbe disease based on enzyme activity and subsequent DNA analysis.