Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 31(10): 2872-2886, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37481700

RESUMO

Adoptive regulatory T (Treg) cell therapy is predicted to modulate immune tolerance in autoimmune diseases, including type 1 diabetes (T1D). However, the requirement for antigen (ag) specificity to optimally orchestrate tissue-specific, Treg cell-mediated tolerance limits effective clinical application. To address this challenge, we present a single-step, combinatorial gene editing strategy utilizing dual-locus, dual-homology-directed repair (HDR) to generate and specifically expand ag-specific engineered Treg (EngTreg) cells derived from donor CD4+ T cells. Concurrent delivery of CRISPR nucleases and recombinant (r)AAV homology donor templates targeting FOXP3 and TRAC was used to achieve three parallel goals: enforced, stable expression of FOXP3; replacement of the endogenous T cell receptor (TCR) with an islet-specific TCR; and selective enrichment of dual-edited cells. Each HDR donor template contained an alternative component of a heterodimeric chemically inducible signaling complex (CISC), designed to activate interleukin-2 (IL-2) signaling in response to rapamycin, promoting expansion of only dual-edited EngTreg cells. Using this approach, we generated purified, islet-specific EngTreg cells that mediated robust direct and bystander suppression of effector T (Teff) cells recognizing the same or a different islet antigen peptide, respectively. This platform is broadly adaptable for use with alternative TCRs or other targeting moieties for application in tissue-specific autoimmune or inflammatory diseases.

2.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
3.
Sci Rep ; 13(1): 757, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641520

RESUMO

Heterogeneity of COVID-19 manifestations in human population is vast, for reasons unknown. Cotton rats are a clinically relevant small animal model of human respiratory viral infections. Here, we demonstrate for the first time that SARS-CoV-2 infection in cotton rats affects multiple organs and systems, targeting species- and age-specific biological processes. Infection of S. fulviventer, which developed a neutralizing antibody response and were more susceptible to SARS-CoV-2 replication in the upper respiratory tract, was accompanied by hyperplasia of lacrimal drainage-associated lymphoid tissue (LDALT), a first known report of mucosa-associated lymphoid tissue activation at the portal of SARS-CoV-2 entry. Although less permissive to viral replication, S. hispidus showed hyperplasia of bone marrow in the facial bones and increased pulmonary thrombosis in aged males. Augmentation of these features by SARS-CoV-2 infection suggests a virus-induced breach in regulatory mechanisms which could be devastating for people of all ages with underlying conditions and in particular for elderly with a multitude of ongoing disorders.


Assuntos
COVID-19 , Masculino , Animais , Humanos , Idoso , Sigmodontinae , Hiperplasia , SARS-CoV-2 , Fatores Etários
4.
J Transl Sci ; 8(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340440

RESUMO

Although HSV-1 has been implicated in facial palsy for a long time, testing and treating for HSV is not routine. The lack of a meaningful demonstration of how HSV-1 would cause facial palsy has limited progress in this field. Herein we demonstrate that the depth of the lip HSV-1 infection defines the course of the disease, with deeper subcutaneous infection allowing virus access to the facial nerve and causing facial palsy. HSV-1 inoculated subcutaneously caused extensive facial paralysis in cotton rats Sigmodon hispidus, while virus inoculated in the same area of the lip by skin surface abrasion did not. Demyelination along the facial nerve (CN VII) accompanied subcutaneous HSV-1 infection and was identified as the possible underlying mechanism of the disease. This causality demonstration is particularly important in light of increased facial palsy outbreaks associated with SARS-CoV-2 infection and SARS-CoV-2 and influenza vaccinations.

5.
Sci Transl Med ; 14(665): eabn1716, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197963

RESUMO

Adoptive transfer of regulatory T cells (Tregs) is therapeutic in type 1 diabetes (T1D) mouse models. Tregs that are specific for pancreatic islets are more potent than polyclonal Tregs in preventing disease. However, the frequency of antigen-specific natural Tregs is extremely low, and ex vivo expansion may destabilize Tregs, leading to an effector phenotype. Here, we generated durable, antigen-specific engineered Tregs (EngTregs) from primary human CD4+ T cells by combining FOXP3 homology-directed repair editing and lentiviral T cell receptor (TCR) delivery. Using TCRs derived from clonally expanded CD4+ T cells isolated from patients with T1D, we generated islet-specific EngTregs that suppressed effector T cell (Teff) proliferation and cytokine production. EngTregs suppressed Teffs recognizing the same islet antigen in addition to bystander Teffs recognizing other islet antigens through production of soluble mediators and both direct and indirect mechanisms. Adoptively transferred murine islet-specific EngTregs homed to the pancreas and blocked diabetes triggered by islet-specific Teffs or diabetogenic polyclonal Teffs in recipient mice. These data demonstrate the potential of antigen-specific EngTregs as a targeted therapy for preventing T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Citocinas , Diabetes Mellitus Tipo 1/genética , Fatores de Transcrição Forkhead , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores
6.
Hum Vaccin Immunother ; 17(1): 133-145, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-32614696

RESUMO

Inactivated influenza vaccines are known to be less immunogenic in human elderly in regards to serologic antibody response induced by vaccination. Accumulating evidence, however, points to a comparable effectiveness of influenza vaccines in the young and the elderly individuals. In the current study, we assessed immunogenicity and effectiveness of trivalent inactivated vaccine FluLaval in young and aged cotton rats Sigmodon hispidus and found that while serologic response to immunization was indeed reduced in older animals, comparable protection against influenza infection was afforded by prime-boost vaccination in both young and aged cotton rats. Both hemagglutination inhibition (HAI) titers and seroconversion rates were lower in the aged animals compared to the young ones. Reduction of viral load in the lung and nose, however, was comparable between young and aged animals vaccinated twice. One-time immunization with FluLaval was less efficacious at protecting the nose of aged animals, indicating that boosting of preexisting immunity can be particularly important for nasal protection in the elderly. Coincidentally, a one-time immunization with FluLaval had a detrimental effect on pulmonary pathology in the young animals, suggesting that boosting of immunity is essential for the young as well. Overall, these results suggest that reduced antibody response to and sufficient efficacy of influenza vaccines in the elderly are not two irreconcilable phenomena and that incomplete immunity to influenza can be detrimental at any age.


Assuntos
Vacinas contra Influenza , Influenza Humana , Envelhecimento , Animais , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Sigmodontinae , Vacinas de Produtos Inativados
7.
Zookeys ; (364): 47-91, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24453545

RESUMO

Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were "hidden" within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.


ResumenLos estudios sobre delimitación de especies basados en un enfoque integral han recibido considerable atención en los últimos años, y proveen las hipótesis más robustas sobre límites de especies. Usamos tres líneas de evidencia (molecular, morfológica y modelos de nichos) para evaluar los límites de especies entre poblaciones peruanas del complejo Liolaemus walkeri. Nuestros resultados muestran que las diferentes líneas de evidencia y análisis en diferentes combinaciones son congruentes en el descubrimiento no ambiguo de tres linajes que estuvieron confundidos con especies ya conocidas y que ahora merecen reconocimiento específico. Nuestro análisis filogenético muestra que L. walkeri, L. tacnae y las tres nuevas especies están bien distanciadas de las otras especies asignadas al grupo alticolor-bibronii. Pocos caracteres morfológicos convencionales distinguen las nuevas especies de otras estrechamente relacionadas, y esto indica la necesidad de integración de diferentes fuentes de datos para elaborar hipótesis más sólidas sobre límites entre especies. Se proporciona una clave taxonómica para las especies peruanas conocidas del subgénero Liolaemus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA