Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 620(7973): 328-335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438526

RESUMO

Perovskites with low ionic radii metal centres (for example, Ge perovskites) experience both geometrical constraints and a gain in electronic energy through distortion; for these reasons, synthetic attempts do not lead to octahedral [GeI6] perovskites, but rather, these crystallize into polar non-perovskite structures1-6. Here, inspired by the principles of supramolecular synthons7,8, we report the assembly of an organic scaffold within perovskite structures with the goal of influencing the geometric arrangement and electronic configuration of the crystal, resulting in the suppression of the lone pair expression of Ge and templating the symmetric octahedra. We find that, to produce extended homomeric non-covalent bonding, the organic motif needs to possess self-complementary properties implemented using distinct donor and acceptor sites. Compared with the non-perovskite structure, the resulting [GeI6]4- octahedra exhibit a direct bandgap with significant redshift (more than 0.5 eV, measured experimentally), 10 times lower octahedral distortion (inferred from measured single-crystal X-ray diffraction data) and 10 times higher electron and hole mobility (estimated by density functional theory). We show that the principle of this design is not limited to two-dimensional Ge perovskites; we implement it in the case of copper perovskite (also a low-radius metal centre), and we extend it to quasi-two-dimensional systems. We report photodiodes with Ge perovskites that outperform their non-octahedral and lead analogues. The construction of secondary sublattices that interlock with an inorganic framework within a crystal offers a new synthetic tool for templating hybrid lattices with controlled distortion and orbital arrangement, overcoming limitations in conventional perovskites.

2.
Proc Natl Acad Sci U S A ; 120(41): e2305327120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788308

RESUMO

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 µm) and dark current density < 400 nA cm-2, a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm-2).

3.
J Am Chem Soc ; 140(5): 1900-1909, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29319313

RESUMO

Photocurrents generated by illumination of carbon-based molecular junctions were investigated as diagnostics of how molecular structure and orbital energies control electronic behavior. Oligomers of eight aromatic molecules covalently bonded to an electron-beam deposited carbon surface were formed by electrochemical reduction of diazonium reagents, with layer thicknesses in the range of 5-12 nm. Illumination through either the top or bottom partially transparent electrodes produced both an open circuit potential (OCP) and a photocurrent (PC), and the polarity and spectrum of the photocurrent depended directly on the relative positions of the frontier orbitals and the electrode Fermi level (EF). Electron donors with relatively high HOMO energies yielded positive OCP and PC, and electron acceptors with LUMO energies closer to EF than the HOMO energy produced negative OCP and PC. In all cases, the PC spectrum and the absorption spectrum of the oligomer in the molecular junction had very similar shapes and wavelength maxima. Asymmetry of electronic coupling at the top and bottom electrodes due to differences in bonding and contact area cause an internal potential gradient which controls PC and OCP polarities. The results provide a direct indication of which orbital energies are closest to EF and also indicate that transport in molecular junctions thicker than 5 nm is controlled by the difference in energy of the HOMO and LUMO orbitals.

4.
Anal Chem ; 89(24): 13532-13540, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29132207

RESUMO

Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp2- and sp3-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy. A layer of KCl deposited by e-beam to the eC surface without breaking vacuum protects the surface from the environment after fabrication until dissolved by an ultrapure electrolyte solution. Nanogap voltammetry using scanning electrochemical microscopy (SECM) permits measurement of heterogeneous standard electron-transfer rate constants (k°) in a clean environment without exposure of the electrode surface to ambient air. The ultraflat eC surface permitted nanogap voltammetry with very thin electrode-to-substrate gaps, thus increasing the diffusion limit for k° measurement to >14 cm/s for a gap of 44 nm. Ferrocene trimethylammonium as the redox mediator exhibited a diffusion-limited k° for the previously KCl-protected eC surface, while k° was 1.45 cm/s for unprotected eC. The k° for Ru(NH3)63+/2+ increased from 1.7 cm/s for unprotected eC to above the measurable limit of 6.9 cm/s for a KCl-protected eC electrode.

5.
J Sep Sci ; 36(4): 736-43, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23339011

RESUMO

A two-phase electromembrane extraction (EME) was developed and directly coupled with gas chromatography mass spectrometry (GC-MS) analysis. The proposed method was successfully applied to the simultaneous determination of imipramine, desipramine, citalopram and sertraline. The model compounds were extracted from neutral aqueous sample solutions into the organic phase filled in the lumen of the hollow fiber. This method was accomplished with 1-heptanol as organic phase, by means of 60 V applied voltage and with the extraction time of 15 min. Experiments reported recoveries in the range of 69-87% from 1.2 mL neutral sample solution. The compounds were quantified by GC-MS instrument, with acceptable linearity ranging from 1 to 500 ng mL(-1) (R(2) in the range of 0.989 to 0.998), and repeatability (RSD) ranging between 7.5 and 11.5% (n = 5). The estimated detection limits (S/N ratio of 3:1) were less than 0.25 ng mL(-1). This novel approach based on two-phase EME brought advantages such as simplicity, low-costing, low detection limit and fast extraction with a total analysis time less than 25 min. These experimental findings were highly interesting and demonstrated the possibility of solving ionic species in the organic phase at the presence of electrical potential.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Extração em Fase Sólida/métodos , Membranas , Estrutura Molecular , Extração em Fase Sólida/instrumentação
6.
ACS Nano ; 11(4): 3542-3552, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28238263

RESUMO

Carbon-based molecular junctions consisting of aromatic oligomers between conducting sp2 hybridized carbon electrodes exhibit structure-dependent current densities (J) when the molecular layer thickness (d) exceeds ∼5 nm. All four of the molecular structures examined exhibit an unusual, nonlinear ln J vs bias voltage (V) dependence which is not expected for conventional coherent tunneling or activated hopping mechanisms. All molecules exhibit a weak temperature dependence, with J increasing typically by a factor of 2 over the range of 200-440 K. Fluorene and anthraquinone show linear plots of ln J vs d with nearly identical J values for the range d = 3-10 nm, despite significant differences in their free-molecule orbital energy levels. The observed current densities for anthraquinone, fluorene, nitroazobenzene, and bis-thienyl benzene for d = 7-10 nm show no correlation with occupied (HOMO) or unoccupied (LUMO) molecular orbital energies, contrary to expectations for transport mechanisms based on the offset between orbital energies and the electrode Fermi level. UV-vis absorption spectroscopy of molecular layers bonded to carbon electrodes revealed internal energy levels of the chemisorbed films and also indicated limited delocalization in the film interior. The observed current densities correlate well with the observed UV-vis absorption maxima for the molecular layers, implying a transport mechanism determined by the HOMO-LUMO energy gap. We conclude that transport in carbon-based aromatic molecular junctions is consistent with multistep tunneling through a barrier defined by the HOMO-LUMO gap, and not by charge transport at the electrode interfaces. In effect, interfacial "injection" at the molecule/electrode interfaces is not rate limiting due to relatively strong electronic coupling, and transport is controlled by the "bulk" properties of the molecular layer interior.

7.
ACS Nano ; 10(9): 8918-28, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27529117

RESUMO

Large area molecular junctions were fabricated on electron-beam deposited carbon (eC) surfaces with molecular layers in the range of 2-5.5 nm between conducting, amorphous carbon contacts. Incorporating eC as an interconnect between Au and the molecular layer improves substrate roughness, prevents electromigration and uses well-known electrochemistry to form a covalent C-C bond to the molecular layer. Au/eC/anthraquinone/eC/Au junctions were fabricated on Si/SiOx with high yield and reproducibility and were unchanged by 10(7) current-voltage cycles and temperatures between 80 and 450 K. Au/eC/AQ/eC/Au devices fabricated on plastic films were unchanged by 10(7) current density vs bias voltage (J-V) cycles and repeated bending of the entire assembled junction. The low sheet resistance of Au/eC substrates permitted junctions with sufficiently transparent electrodes to conduct Raman or UV-vis absorption spectroscopy in either reflection or transmission geometries. Lithographic patterning of Au/eC substrates permitted wafer-scale integration yielding 500 devices on 20 chips on a 100 mm diameter wafer. Collectively, eC on Au provides a platform for fabrication and operation of chemically stable, optically and electrically functional molecules on rigid or flexible materials. The relative ease of processing and the robustness of molecular junctions incorporating eC layers should help address the challenge of economic fabrication of practical, flexible molecular junctions for a potentially wide range of applications.

8.
Anal Chim Acta ; 838: 51-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064243

RESUMO

There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape. Extraction efficiencies of seven basic pharmaceutical compounds using eighteen common organic solvents were studied in this work. It was much easier to work with high-density solvents and they mostly showed better performances. This work shows that although exact predicting the performance of the solvents is multifaceted case but the pre-consideration of initial selection of solvents with attention to the physiochemical properties of the desired analytes is feasible and promising. Finally, the practicality of the method for extraction from urine and plasma samples was investigated.

9.
Faraday Discuss ; 172: 9-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347956

RESUMO

Carbon has always been an important electrode material for electrochemical applications, and the relatively recent development of carbon nanotubes and graphene as electrodes has significantly increased interest in the field. Carbon solids, both sp(2) and sp(3) hybridized, are unique in their combination of electronic conductivity and the ability to form strong bonds to a variety of other elements and molecules. The Faraday Discussion included broad concepts and applications of carbon materials in electrochemistry, including analysis, energy storage, materials science, and solid-state electronics. This introductory paper describes some of the special properties of carbon materials useful in electrochemistry, with particular illustrations in the realm of molecular electronics. The strong bond between sp(2) conducting carbon and aromatic organic molecules enables not only strong electronic interactions across the interface between the two materials, but also provides sufficient stability for practical applications. The last section of the paper discusses several factors which affect the electron transfer kinetics at highly ordered pyrolytic graphite, some of which are currently controversial. These issues bear on the general question of how the structure and electronic properties of the carbon electrode material control its utility in electrochemistry and electron transport, which are the core principles of electrochemistry using carbon electrodes.

10.
Anal Chim Acta ; 789: 58-64, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23856230

RESUMO

This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 µg L(-1) (R(2) values≥0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n=5). Also, preconcentration factors of 21.8-33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 µg L(-1). Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples.


Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromo/análise , Poluentes Químicos da Água/análise , Ânions/isolamento & purificação , Cátions/isolamento & purificação , Fracionamento Químico/instrumentação , Cromo/química , Cromo/isolamento & purificação , Técnicas Eletroquímicas , Eletrodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Limite de Detecção , Microextração em Fase Líquida/métodos , Pirrolidinas/química , Reprodutibilidade dos Testes , Rios/química , Solventes/química , Tiocarbamatos/química
11.
Anal Chim Acta ; 745: 45-52, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22938605

RESUMO

This study has performed on electromembrane extraction (EME) of some zwitterionic compounds based on their acidic and basic properties. High performance liquid chromatography (HPLC) equipped with UV detection was used for determination of model compounds. Cetirizine (CTZ) and mesalazine (MS) were chosen as model compounds, and each of them was extracted from acidic (as a cation) and basic (as an anion) sample solutions, separately. 1-Octanol and 2-nitrophenyl octylether (NPOE) were used as the common supported liquid membrane (SLM) solvents. EME parameters, such as extraction time, extraction voltage and pH of donor and acceptor solutions were studied in details for cationic and anionic forms of each model compound and obtained results for two ionic forms (cationic and anionic) of each compound were compared together. Results showed that zwitterionic compounds could be extracted in both cationic and anionic forms. Moreover, it was found that the extraction of anionic form of each model compound could be done in low voltages when 1-octanol was used as the SLM solvent. Results showed that charge type was not highly effective on the extraction efficiency of model compounds whereas the position of charge within the molecule was the key parameter. In optimized conditions, enrichment factors (EF) of 27-60 that corresponded to recoveries ranging from 39 to 86% were achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA