Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trop Med Int Health ; 28(4): 275-299, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36861882

RESUMO

The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.


Assuntos
Vacinas , Humanos , Vacinas/uso terapêutico , Bactérias , Antígenos , Desenvolvimento de Vacinas
2.
J Fungi (Basel) ; 8(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448554

RESUMO

Cytochrome P450s are a group of monooxygenase enzymes involved in primary, secondary and xenobiotic metabolisms. They have a wide application in the agriculture sector where they could serve as a target for herbicides or fungicides, while they could function in the pharmaceutical industry as drugs or drugs structures or for bioconversions. Alternaria species are among the most commonly encountered fungal genera, with most of them living as saprophytes in different habitats, while others are parasites of plants and animals. This study was conducted to elucidate the diversity and abundance, evolutionary relationships and cellular localization of 372 cytochrome P450 in 13 Alternaria species. The 372 CYP proteins were phylogenetically clustered into ten clades. Forty (40) clans and seventy-one (71) cyp families were identified, of which eleven (11) families were found to appear in one species each. The majority of the CYP proteins were located in the endomembrane system. Polyketide synthase (PKS) gene cluster was the predominant secondary metabolic-related gene cluster in all the Alternaria species studied, except in A. porriof, where non-ribosomal peptide synthetase genes were dominant. This study reveals the expansion of cyps in these fungal genera, evident in the family and clan expansions, which is usually associated with the evolution of fungal characteristics, especially their lifestyle either as parasites or saprophytes, with the ability to metabolize a wide spectrum of substrates. This study can be used to understand the biology, physiology and toxigenic potentials of P450 in these fungal genera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA