Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
2.
J Exp Bot ; 74(21): 6468-6486, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37589495

RESUMO

The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.


Assuntos
Melhoramento Vegetal , Plantas , Fotossíntese , Agricultura/métodos
3.
Physiol Plant ; 175(2): e13906, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006174

RESUMO

Transpiration per unit of leaf area is the end-product of the root-to-leaf water transport within the plant, and it is regulated by a series of morpho-physiological resistances and hierarchical signals. The rate of water transpired sustains a series of processes such as nutrient absorption and leaf evaporative cooling, with stomata being the end-valves that maintain the optimal water loss under specific degrees of evaporative demand and soil moisture conditions. Previous work provided evidence of a partial modulation of water flux following nitrogen availability linking high nitrate availability with tight stomatal control of transpiration in several species. In this work, we tested the hypothesis that stomatal control of transpiration, among others signals, is partially modulated by soil nitrate ( NO 3 - ) availability in grapevine, with reduced NO 3 - availability (alkaline soil pH, reduced fertilization, and distancing NO 3 - source) associated with decreased water-use efficiency and higher transpiration. We observed a general trend when NO 3 - was limiting with plants increasing either stomatal conductance or root-shoot ratio in four independent experiments with strong associations between leaf water status, stomatal behavior, root aquaporins expression, and xylem sap pH. Carbon and oxygen isotopic signatures confirm the proximal measurements, suggesting the robustness of the signal that persists over weeks and under different gradients of NO 3 - availability and leaf nitrogen content. Nighttime stomatal conductance was unaffected by NO 3 - manipulation treatments, while application of high vapor pressure deficit conditions nullifies the differences between treatments. Genotypic variation for transpiration increase under limited NO 3 - availability was observed between rootstocks indicating that breeding (e.g., for high soil pH tolerance) unintentionally selected for enhanced mass flow nutrient acquisition under restrictive or nutrient-buffered conditions. We provide evidence of a series of specific traits modulated by NO 3 - availability and suggest that NO 3 - fertilization is a potential candidate for optimizing grapevine water-use efficiency and root exploration under the climate-change scenario.


Assuntos
Nitrogênio , Transpiração Vegetal , Transpiração Vegetal/fisiologia , Nitratos , Água/metabolismo , Solo , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia
4.
J Exp Bot ; 73(10): 3238-3250, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-34929033

RESUMO

Stomata control CO2 uptake for photosynthesis and water loss through transpiration, thus playing a key role in leaf thermoregulation, water-use efficiency (iWUE), and plant productivity. In this work, we investigated the relationship between several leaf traits and hypothesized that stomatal behavior to fast (i.e. minutes) environmental changes co-determines, along with steady-state traits, the physiological response of grapevine to the surrounding fluctuating environment over the growing season. No relationship between iWUE, heat stress tolerance, and stomatal traits was observed in field-grown grapevine, suggesting that other physiological mechanisms are involved in determining leaf evaporative cooling capacity and the seasonal ratio of CO2 uptake (A) to stomatal conductance (gs). Indeed, cultivars that in the field had an unexpected combination of high iWUE but low sensitivity to thermal stress displayed a quick stomatal closure to light, but a sluggish closure to increased vapor pressure deficit (VPD) levels. This strategy, aiming both at conserving water under a high to low light transition and in prioritizing evaporative cooling under a low to high VPD transition, was mainly observed in the cultivars Regina and Syrah. Moreover, cultivars with different known responses to soil moisture deficit or high air VPD (isohydric versus anisohydric) had opposite behavior under fluctuating environments, with the isohydric cultivar showing slow stomatal closure to reduced light intensity but quick temporal responses to VPD manipulation. We propose that stomatal behavior to fast environmental fluctuations can play a critical role in leaf thermoregulation and water conservation under natural field conditions in grapevine.


Assuntos
Termotolerância , Vitis , Dióxido de Carbono , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Estações do Ano , Vitis/fisiologia , Água/fisiologia
5.
Plant Cell Environ ; 40(8): 1409-1428, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28239986

RESUMO

Grape quality and yield can be impaired by bunch rot, caused by the necrotrophic fungus Botrytis cinerea. Infection often occurs at flowering, and the pathogen stays quiescent until fruit maturity. Here, we report a molecular analysis of the early interaction between B. cinerea and Vitis vinifera flowers, using a controlled infection system, confocal microscopy and integrated transcriptomic and metabolic analysis of the host and the pathogen. Flowers from fruiting cuttings of the cultivar Pinot Noir were infected with green fluorescent protein (GFP)-labelled B. cinerea and studied at 24 and 96 hours post-inoculation (h.p.i.). We observed that penetration of the epidermis by B. cinerea coincided with increased expression of genes encoding cell-wall-degrading enzymes, phytotoxins and proteases. Grapevine responded with a rapid defence reaction involving 1193 genes associated with the accumulation of antimicrobial proteins, polyphenols, reactive oxygen species and cell wall reinforcement. At 96 h.p.i., the reaction appears largely diminished both in the host and in the pathogen. Our data indicate that the defence responses of the grapevine flower collectively are able to restrict invasive fungal growth into the underlying tissues, thereby forcing the fungus to enter quiescence until the conditions become more favourable to resume pathogenic development.


Assuntos
Botrytis/fisiologia , Flores/microbiologia , Interações Hospedeiro-Patógeno/genética , Vitis/genética , Vitis/microbiologia , Vias Biossintéticas , Botrytis/genética , Parede Celular/metabolismo , Flores/genética , Flores/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma/genética , Doenças das Plantas/microbiologia , Polifenóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário , Análise de Sequência de RNA , Software , Transcriptoma/genética , Regulação para Cima/genética , Vitis/imunologia
6.
J Exp Bot ; 67(11): 3509-22, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27194742

RESUMO

In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine.


Assuntos
Flavonóis/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Flavonóis/biossíntese , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Vitis/metabolismo
7.
J Exp Bot ; 66(15): 4427-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071528

RESUMO

In the last decade, great progress has been made in clarifying the main determinants of anthocyanin accumulation in grape berry skin. However, the molecular details of the fine variation among cultivars, which ultimately contributes to wine typicity, are still not completely understood. To shed light on this issue, the grapes of 170 F1 progeny from the cross 'Syrah'×'Pinot Noir' were characterized at the mature stage for the content of 15 anthocyanins during four growing seasons. This huge data set was used in combination with a dense genetic map to detect genomic regions controlling the anthocyanin pathway both at key enzymatic points and at particular branches. Genes putatively involved in fine tuning the global regulation of anthocyanin biosynthesis were identified by exploring the gene predictions in the QTL (quantitative trait locus) confidence intervals and their expression profile during berry development in offspring with contrasting anthocyanin accumulation. New information on some aspects which had scarcely been investigated so far, such as anthocyanin transport into the vacuole, or completely neglected, such as acylation, is provided. These genes represent a valuable resource in grapevine molecular-based breeding programmes to improve both fruit and wine quality and to tailor wine sensory properties according to consumer demand.


Assuntos
Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Vitis/genética , Antocianinas/genética , Frutas/genética , Frutas/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcrição Gênica , Vitis/metabolismo
8.
J Exp Bot ; 66(15): 4441-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071529

RESUMO

Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear. To this purpose, the grapes of 170 segregating F1 individuals from a 'Syrah'×'Pinot Noir' population were evaluated at the mature stage for the content of six flavonol aglycons in four seasons. Metabolic data in combination with genetic data enabled the identification of 16 mQTLs (metabolic quantitative trait loci). For the first time, major genetic control by the linkage group 2 (LG 2)/MYBA region on flavonol variation, in particular of tri-hydroxylated flavonols, is demonstrated. Moreover, seven regions specifically associated with the fine control of flavonol biosynthesis are identified. Gene expression profiling of two groups of individuals significantly divergent for their skin flavonol content identified a large set of differentially modulated transcripts. Among these, the transcripts coding for MYB and bZIP transcription factors, methyltranferases, and glucosyltranferases specific for flavonols, proteins, and factors belonging to the UV-B signalling pathway and co-localizing with the QTL regions are proposed as candidate genes for the fine regulation of flavonol content and composition in mature grapes.


Assuntos
Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Vitis/genética , Flavonóis/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Análise de Sequência de DNA , Vitis/metabolismo
9.
BMC Genet ; 16: 28, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25886993

RESUMO

BACKGROUND: A collection of 175 melon (Cucumis melo L.) accessions (including wild relatives, feral types, landraces, breeding lines and commercial cultivars) from 50 countries was selected to study the phenotypic variability for ripening behavior and sugar accumulation. The variability of single nucleotide polymorphisms (SNPs) at 53 selected candidate genes involved in sugar accumulation and fruit ripening processes was studied, as well as their association with phenotypic variation of related traits. RESULTS: The collection showed a strong genetic structure, defining seven groups plus a number of accessions that could not be associated to any of the groups (admixture), which fitted well with the botanical classification of melon varieties. The variability in candidate genes for ethylene, cell wall and sugar-related traits was high and similar to SNPs located in reference genes. Variability at ripening candidate genes had an important weight on the genetic stratification of melon germplasm, indicating that traditional farmers might have selected for ripening traits during cultivar diversification. A strong relationship was also found between the genetic structure and phenotypic diversity, which could hamper genetic association studies. Accessions belonging to the ameri group are the most appropriate for association analysis given the high phenotypic and molecular diversity within the group, and lack of genetic structure. The most remarkable association was found between sugar content and SNPs in LG III, where a hotspot of sugar content QTLs has previously been defined. By studying the differences in allelic variation of SNPs within horticultural groups with specific phenotypic features, we also detected differential variation in sugar-related candidates located in LGIX and LGX, and in ripening-related candidates located in LGII and X, all in regions with previously mapped QTLs for the corresponding traits. CONCLUSIONS: In the current study we have found an important variability at both the phenotypic and candidate gene levels for ripening behavior and sugar accumulation in melon fruit. By combination of differences in allelic diversity and association analysis, we have identified several candidate genes that may be involved in the melon phenotypic diversity.


Assuntos
Metabolismo dos Carboidratos , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Genes de Plantas , Variação Genética , Genoma de Planta , Frutas , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sementes
10.
BMC Plant Biol ; 14: 87, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24693871

RESUMO

BACKGROUND: The ripening of fleshy fruits is a complex developmental program characterized by extensive transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft, tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the accumulation of hydrogen peroxide (H2O2) and extensive modulation of reactive oxygen species (ROS) scavenging enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken. RESULTS: ROS-specific staining allowed to visualize not only H2O2 but also singlet oxygen (1O2) in berry skin cells just before color change in distinct subcellular locations, i.e. cytosol and plastids. H2O2 peak in sample skins at véraison was confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosyl diacylglycerols were found peroxidized on one or both α-linolenic fatty acid chains, with a 13(S) absolute configuration implying the action of a specific enzyme. A lipoxygenase (PnLOXA), expressed at véraison and localizing inside the chloroplasts, was indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves. CONCLUSIONS: The present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.


Assuntos
Membrana Celular/metabolismo , Frutas/crescimento & desenvolvimento , Peroxidação de Lipídeos , Epiderme Vegetal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitis/enzimologia , Vitis/crescimento & desenvolvimento , Biocatálise , Western Blotting , Catalase/metabolismo , Ácidos Graxos/metabolismo , Frutas/enzimologia , Frutas/genética , Galactolipídeos/química , Galactolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Hidrólise , Lipoxigenase/metabolismo , Espectrometria de Massas , Microscopia Confocal , Epiderme Vegetal/enzimologia , Folhas de Planta/metabolismo , Plastídeos/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Oxigênio Singlete/metabolismo , Nicotiana/metabolismo , Vitis/genética
11.
J Exp Bot ; 64(14): 4403-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006417

RESUMO

Gibberellins (GAs) are involved in the regulation of flowering and fruit-set in grapes (Vitis vinifera L.), but the molecular mechanisms behind this process are mostly unknown. In this work, the family of grapevine GA oxidases involved in the biosynthesis and deactivation of GAs was characterized. Six putative GA 20-oxidase (GA20ox), three GA 3-oxidase (GA3ox), and eight GA 2-oxidase (GA2ox) proteins, the latter further divided into five C19-GA 2ox and three C20-GA2ox proteins, were identified. Phylogenetic analyses suggest a common origin of the GA3ox and C19-GA2ox groups and challenge previous evolutionary models. In vitro analysis revealed that all GA3ox and GA20ox enzymes prefer substrates of the non-13-hydroxylation pathway. In addition, ectopic expression of GA2ox genes in Arabidopsis thaliana confirmed the activity of their encoded proteins in vivo. The results show that bioactive GA1 accumulates in opening grapevine flowers, whereas at later developmental stages only GA4 is detected in the setting fruit. By studying the expression pattern of the grapevine GA oxidase genes in different organs, and at different stages of flowering and fruit-set, it is proposed that the pool of bioactive GAs is controlled by a fine regulation of the abundance and localization of GA oxidase transcripts.


Assuntos
Evolução Molecular , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Flores/enzimologia , Flores/genética , Frutas/enzimologia , Frutas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Especificidade de Órgãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato/genética , Vitis/enzimologia , Vitis/genética
12.
Front Plant Sci ; 14: 1242240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692430

RESUMO

The reduction of pesticide treatments is of paramount importance for the sustainability of viticulture, and it can be achieved through a combination of strategies, including the cultivation of vines (Vitis vinifera) that are resistant or tolerant to diseases such as downy mildew (DM). In many crops, the knock-out of Downy Mildew Resistant 6 (DMR6) proved successful in controlling DM-resistance, but the effect of mutations in DMR6 genes is not yet known in grapevine. Today, gene editing serves crop improvement with small and specific mutations while maintaining the genetic background of commercially important clones. Moreover, recent technological advances allowed to produce non-transgenic grapevine clones by regeneration of protoplasts edited with the CRISPR/Cas9 ribonucleoprotein. This approach may revolutionize the production of new grapevine varieties and clones, but it requires knowledge about the targets and the impact of editing on plant phenotype and fitness in different cultivars. In this work we generated single and double knock-out mutants by editing DMR6 susceptibility (S) genes using CRISPR/Cas9, and showed that only the combined mutations in VviDMR6-1 and VviDMR6-2 are effective in reducing susceptibility to DM in two table-grape cultivars by increasing the levels of endogenous salicylic acid. Therefore, editing both genes may be necessary for effective DM control in real-world agricultural settings, which could potentially lead to unwanted phenotypes. Additional research, including trials conducted in experimental vineyards, is required to gain a deeper understanding of DMR6-based resistance.

13.
Mol Plant Microbe Interact ; 25(8): 1118-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22550957

RESUMO

Defensins are a class of small and diverse cysteine-rich proteins found in plants, insects, and vertebrates, which share a common tertiary structure and usually exert broad-spectrum antimicrobial activities. We used a bioinformatic approach to scan the Vitis vinifera genome and identified 79 defensin-like sequences (DEFL) corresponding to 46 genes and allelic variants, plus 33 pseudogenes and gene fragments. Expansion and diversification of grapevine DEFL has occurred after the split from the last common ancestor with the genera Medicago and Arabidopsis. Grapevine DEFL localization on the 'Pinot Noir' genome revealed the presence of several clusters likely evolved through local duplications. By sequencing reverse-transcription polymerase chain reaction products, we could demonstrate the expression of grapevine DEFL with no previously reported record of expression. Many of these genes are predominantly or exclusively expressed in tissues linked to plant reproduction, consistent with findings in other plant species, and some of them accumulated at fruit ripening. The transcripts of five DEFL were also significantly upregulated in tissues infected with Botrytis cinerea, a necrotrophic mold, suggesting a role of these genes in defense against this pathogen. Finally, three novel defensins were discovered among the identified DEFL. They inhibit B. cinerea conidia germination when expressed as recombinant proteins.


Assuntos
Defensinas/genética , Família Multigênica , Vitis/genética , Sequência de Aminoácidos , Botrytis/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitis/microbiologia
14.
BMC Genomics ; 13: 660, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173562

RESUMO

BACKGROUND: Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine and is commonly controlled by fungicide treatments. The beneficial microorganism Trichoderma harzianum T39 (T39) can induce resistance to downy mildew, although the molecular events associated with this process have not yet been elucidated in grapevine. A next generation RNA sequencing (RNA-Seq) approach was used to study global transcriptional changes associated with resistance induced by T39 in Vitis vinifera Pinot Noir leaves. The long-term aim was to develop strategies to optimize the use of this agent for downy mildew control. RESULTS: More than 14.8 million paired-end reads were obtained for each biological replicate of T39-treated and control leaf samples collected before and 24 h after P. viticola inoculation. RNA-Seq analysis resulted in the identification of 7,024 differentially expressed genes, highlighting the complex transcriptional reprogramming of grapevine leaves during resistance induction and in response to pathogen inoculation. Our data show that T39 has a dual effect: it directly modulates genes related to the microbial recognition machinery, and it enhances the expression of defence-related processes after pathogen inoculation. Whereas several genes were commonly affected by P. viticola in control and T39-treated plants, opposing modulation of genes related to responses to stress and protein metabolism was found. T39-induced resistance partially inhibited some disease-related processes and specifically activated defence responses after P. viticola inoculation, causing a significant reduction of downy mildew symptoms. CONCLUSIONS: The global transcriptional analysis revealed that defence processes known to be implicated in the reaction of resistant genotypes to downy mildew were partially activated by T39-induced resistance in susceptible grapevines. Genes identified in this work are an important source of markers for selecting novel resistance inducers and for the analysis of environmental conditions that might affect induced resistance mechanisms.


Assuntos
Resistência à Doença/genética , Genótipo , Peronospora/fisiologia , Doenças das Plantas/imunologia , Transcrição Gênica , Trichoderma/fisiologia , Vitis/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Vitis/imunologia , Vitis/microbiologia , Vitis/parasitologia
15.
BMC Genomics ; 13: 243, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22702718

RESUMO

BACKGROUND: Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. RESULTS: Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. CONCLUSIONS: The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine.


Assuntos
Vias Biossintéticas/genética , Carotenoides/biossíntese , Vitis/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Vitis/enzimologia , Vitis/metabolismo
16.
J Exp Bot ; 63(18): 6359-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095995

RESUMO

Somatic mutation is a natural mechanism which allows plant growers to develop new cultivars. As a source of variation within a uniform genetic background, it also represents an ideal tool for studying the genetic make-up of important traits and for establishing gene functions. Layer-specific molecular characterization of the Pinot family of grape cultivars was conducted to provide an evolutionary explanation for the somatic mutations that have affected the locus of berry colour. Through the study of the structural dynamics along chromosome 2, a very large deletion present in a single Pinot gris cell layer was identified and characterized. This mutation reveals that Pinot gris and Pinot blanc arose independently from the ancestral Pinot noir, suggesting a novel parallel evolutionary model. This proposed 'Pinot-model' represents a breakthrough towards the full understanding of the mechanisms behind the formation of white, grey, red, and pink grape cultivars, and eventually of their specific enological aptitude.


Assuntos
Evolução Molecular , Deleção de Genes , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Pigmentação , Vitis/genética , Frutas/citologia , Frutas/genética , Frutas/metabolismo , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Taq Polimerase/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/citologia , Vitis/metabolismo
17.
Biomolecules ; 12(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35204683

RESUMO

Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.


Assuntos
Oomicetos , Peronospora , Vitis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oomicetos/genética , Doenças das Plantas/genética , Vitis/genética , Vitis/metabolismo
18.
Front Plant Sci ; 13: 1078931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531381

RESUMO

The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.

19.
BMC Plant Biol ; 11: 114, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21838877

RESUMO

BACKGROUND: Downy mildew, caused by the oomycete Plasmopara viticola, is a serious disease in Vitis vinifera, the most commonly cultivated grapevine species. Several wild Vitis species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a V. vinifera background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to P. viticola of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection. RESULTS: A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of trans-resveratrol, trans-piceid, trans-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-P. viticola incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport. CONCLUSIONS: This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to P. viticola. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.


Assuntos
Oomicetos/fisiologia , Doenças das Plantas/genética , Estilbenos/metabolismo , Vitis/metabolismo , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Interações Hospedeiro-Patógeno , Imunidade Inata/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Sesquiterpenos/metabolismo , Transcrição Gênica , Transcriptoma , Vitis/genética , Vitis/imunologia , Fitoalexinas
20.
Biomolecules ; 11(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525704

RESUMO

Several pathogens continuously threaten viticulture worldwide. Until now, the investigation on resistance loci has been the main trend to understand the interaction between grapevine and the mildew causal agents. Dominantly inherited gene-based resistance has shown to be race-specific in some cases, to confer partial immunity, and to be potentially overcome within a few years since its introgression. Recently, on the footprint of research conducted in Arabidopsis, putative genes associated with downy mildew susceptibility have been discovered also in the grapevine genome. In this work, we deep-sequenced four putative susceptibility genes-namely VvDMR6.1, VvDMR6.2, VvDLO1, VvDLO2-in 190 genetically diverse grapevine genotypes to discover new sources of broad-spectrum and recessively inherited resistance. Identified Single Nucleotide Polymorphisms were screened in a bottleneck analysis from the genetic sequence to their impact on protein structure. Fifty-five genotypes showed at least one impacting mutation in one or more of the scouted genes. Haplotypes were inferred for each gene and two of them at the VvDMR6.2 gene were found significantly more represented in downy mildew resistant genotypes. The current results provide a resource for grapevine and plant genetics and could corroborate genomic-assisted breeding programs as well as tailored gene editing approaches for resistance to biotic stresses.


Assuntos
Mineração de Dados , Fungos/genética , Edição de Genes , Genótipo , Haplótipos , Vitis/genética , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Genoma de Planta , Genômica , Homozigoto , Modelos Genéticos , Mutação , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Estrutura Secundária de Proteína , Locos de Características Quantitativas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA