RESUMO
AIMS: African Americans (AA) in the United States have a high risk of type 2 diabetes mellitus (T2DM) and suffer from disparities in the prevalence, mortality, and comorbidities of the disease compared to other Americans. The present study aimed to shed light on the molecular mechanisms of disease pathogenesis of T2DM among AA in the Washington, DC region. METHODS: We performed TaqMan Low Density Arrays (TLDA) on 24 genes of interest that belong to three categories: metabolic disease and disorders, cancer-related genes, and neurobehavioural disorders genes. The 18 genes, viz. ARNT, CYP2D6, IL6, INSR, RRAD, SLC2A2 (metabolic disease and disorders), APC, BCL2, CSNK1D, MYC, SOD2, TP53 (Cancer-related), APBA1, APBB2, APOC1, APOE, GSK3B, and NAE1 (neurobehavioural disorders), were differentially expressed in T2DM participants compared to controls. RESULTS: Our results suggest that factors including gender, smoking habits, and the severity or lack of control of T2DM (as indicated by HbA1c levels) were significantly associated with differential gene expression. APBA1 was significantly (p-value <0.05) downregulated in all diabetes participants. Upregulation of APOE and CYP2D6 genes and downregulation of the INSR gene were observed in the majority of diabetes patients. CONCLUSIONS: Tobacco smoking and gender were significantly associated with case-control differences in expression of the APBA1 and APOE genes (connected with Alzheimer's disease) and the INSR and CYP2D6 (associated with metabolic disorders). The results highlight the need for more effective management of T2DM and for tobacco smoking cessation interventions in this community, and further research on the associations of T2DM with other disease processes, including cancer and neurobehavioral pathways.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Estados Unidos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , District of Columbia , Negro ou Afro-Americano/genética , Citocromo P-450 CYP2D6 , Genômica , Apolipoproteínas E , Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Tecido NervosoRESUMO
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is becoming the most common chronic liver disease worldwide and is of concern among African Americans (AA) in the United States. This pilot study evaluated the differential gene expressions and identified the signature genes in the disease pathways of AA individuals with MASLD. Blood samples were obtained from MASLD patients (n = 23) and non-MASLD controls (n = 24) along with their sociodemographic and medical details. Whole-blood transcriptomic analysis was carried out using Affymetrix Clarion-S Assay. A validation study was performed utilizing TaqMan Arrays coupled with Ingenuity Pathway Analysis (IPA) to identify the major disease pathways. Out of 21,448 genes in total, 535 genes (2.5%) were significantly (p < 0.05) and differentially expressed when we compared the cases and controls. A significant overlap in the predominant differentially expressed genes and pathways identified in previous studies using hepatic tissue was observed. Of note, TGFB1 and E2F1 genes were upregulated, and HMBS was downregulated significantly. Hepatic fibrosis signaling is the top canonical pathway, and its corresponding biofunction contributes to the development of hepatocellular carcinoma. The findings address the knowledge gaps regarding how signature genes and functional pathways can be detected in blood samples ('liquid biopsy') in AA MASLD patients, demonstrating the potential of the blood samples as an alternative non-invasive source of material for future studies.
Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Humanos , Negro ou Afro-Americano/genética , Projetos Piloto , Perfilação da Expressão GênicaRESUMO
Background: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that is most prevalent in elderly individuals, especially in developed countries, and its prevalence is now increasing in developing countries like Pakistan. Objective: Our goal was to characterize key genes and their levels of expression and related molecular transcriptome networks associated with AD pathogenesis in a pilot case-control study in a Pakistani population. Methods: To obtain the spectrum of molecular networks associated with pathogenesis in AD patients in Pakistan (comparing cases and controls), we used high-throughput qRT-PCR (TaqMan Low-Density Array; nâ=â33 subjects) coupled with Affymetrix Arrays (nâ=â8) and Ingenuity Pathway Analysis (IPA) to identify signature genes associated with Amyloid processing and disease pathways. Results: We confirmed 16 differentially expressed AD-related genes, including maximum fold changes observed in CAPNS2 and CAPN1. The global gene expression study observed that 61% and 39% of genes were significantly (p-value 0.05) up- and downregulated, respectively, in AD patients compared to healthy controls. The key pathways include, e.g., Amyloid Processing, Neuroinflammation Signaling, and ErbB4 Signaling. The top-scoring networks in Diseases and Disorders Development were Neurological Disease, Organismal Injury and Abnormalities, and Psychological Disorders. Conclusions: Our pilot study offers a non-invasive and efficient way of investigating gene expression patterns by combining TLDA and global gene expression method in AD patients by utilizing whole blood. This provides valuable insights into the expression status of genes related to Amyloid Processing, which could play potential role in future studies to identify sensitive, early biomarkers of AD in general.