Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 32(4): 6597-6608, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439359

RESUMO

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock. Combined with post-analysis single pulse jitter correction this new approach improves the temporal resolution for pump-probe experiments significantly. Benchmark measurements on photo-ionization of xenon atoms performed at FLASH beamline FL26, demonstrate a sub-50 fs FWHM overall temporal resolution.

2.
Phys Chem Chem Phys ; 25(37): 25122-25129, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37701993

RESUMO

Velocity map imaging (VMI) is a powerful technique to deduce the kinetic energy of ions or electrons that are produced from a large volume in space with good resolution. The size of the acceptance volume is determined by the spherical aberrations of the ion optical system. Here we present an analytical derivation for velocity map imaging with no spherical aberrations. We will discuss a particular example for the implementation of the technique that allows using the reaction microscope recently installed in the cryogenic storage ring (CSR) in a VMI mode. SIMION simulations confirm that a beam of electrons produced almost over the entire volume of the source region, with a width of 8 cm, can be focused to a spot of 0.1 mm on the detector. The use of the same formalism for position imaging, as well as in a mixed mode where position imaging is in one axis and velocity map imaging is in a different axis, is also discussed.

3.
Opt Express ; 30(8): 13630-13646, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472972

RESUMO

In this paper, a 3-dimensional photoelectron/ion momentum spectrometer (reaction microscope) combined with a table-top attosecond beamline based on a high-repetition rate (49 kHz) laser source is presented. The beamline is designed to achieve a temporal stability below 50 attoseconds. Results from measurements on systems like molecular hydrogen and argon dimers demonstrate the capabilities of this setup in observing the attosecond dynamics in 3D while covering the full solid angle for ionization processes having low cross-sections.

4.
Phys Rev Lett ; 129(18): 183204, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374686

RESUMO

We report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p^{2} ^{1}D^{e} double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method. The measured angular distribution is directly compared to state-of-the-art theory based on multichannel quantum defect theory and the streamlined R-matrix method. These results and experimental methodology open a promising route for exploring fundamental interactions of few photons with few electrons in general.

5.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952783

RESUMO

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

6.
Phys Rev Lett ; 125(17): 173201, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156666

RESUMO

Laser-induced rotational wave packets of H_{2} and D_{2} molecules were experimentally measured in real time by using two sequential 25-fs laser pulses and a reaction microscope. By measuring the time-dependent yields of the above-threshold dissociation and the enhanced ionization of the molecule, we observed a few-femtosecond time delay between the two dissociation channels for both H_{2} and D_{2}. The delay was interpreted and reproduced by a classical model that considers enhanced ionization and thus additional interaction within the laser pulse. We demonstrate that by accurately measuring the phase of the rotational wave packet in hydrogen molecules we can resolve dissociation dynamics which is occurring within a fraction of a molecular rotation. Such a rotational clock is a general concept applicable to sequential fragmentation processes in other molecules.

7.
J Synchrotron Radiat ; 26(Pt 3): 854-867, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074450

RESUMO

A reaction microscope dedicated to multi-particle coincidence spectroscopy on gas-phase samples is installed at beamline FL26 of the free-electron laser FLASH2 in Hamburg. The main goals of the instrument are to follow the dynamics of atoms, molecules and small clusters on their natural time-scale and to study non-linear light-matter interaction with such systems. To this end, the reaction microscope is combined with an in-line extreme-ultraviolet (XUV) split-delay and focusing optics, which allows time-resolved XUV-XUV pump-probe spectroscopy to be performed.

8.
Phys Rev Lett ; 122(7): 073001, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848607

RESUMO

Time delays for atomic photoemission obtained in streaking or reconstruction of attosecond bursts by interference of two-photon transitions experiments originate from a combination of the quantum mechanical Wigner time and the Coulomb-laser coupling. While the former was investigated intensively theoretically as well as experimentally, the latter attracted less interest in experiments and has mostly been subject to calculations. Here, we present a measurement of the Coulomb-laser coupling-induced time shifts in photoionization of neon at 59.4 eV using a terahertz (THz) streaking field (λ=152 µm). Employing a reaction microscope at the THz beamline of the free-electron laser in Hamburg (FLASH), we have measured relative time shifts of up to 70 fs between the emission of 2p photoelectrons (∼38 eV) and low-energetic (<1 eV) photoelectrons. A comparison with theoretical predictions on Coulomb-laser coupling reveals reasonably good agreement.

9.
Phys Rev Lett ; 123(16): 163201, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702368

RESUMO

We report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry. The experimental results obtained at the Free-Electron Laser in Hamburg (FLASH) thus correspond to transient energy shifts on the order of a few meV, induced by strong XUV fields. These results open up a new way of performing nonperturbative XUV nonlinear optics for the light-matter interaction of resonant electronic transitions in atoms at short wavelengths.

10.
J Chem Phys ; 151(8): 084314, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470702

RESUMO

Charge transfer (CT) at avoided crossings of excited ionized states of argon dimers is observed using a two-color pump-probe experiment at the free-electron laser in Hamburg (FLASH). The process is initiated by the absorption of three 27-eV-photons from the pump pulse, which leads to the population of Ar2+*-Ar states. Due to nonadiabatic coupling between these one-site doubly ionized states and two-site doubly ionized states of the type Ar+*-Ar+, CT can take place leading to the population of the latter states. The onset of this process is probed by a delayed infrared (800 nm) laser pulse. The latter ionizes the dimers populating repulsive Ar2+ -Ar+ states, which then undergo a Coulomb explosion. From the delay-dependent yields of the obtained Ar2+ and Ar+ ions, the lifetime of the charge-transfer process is extracted. The obtained experimental value of (531 ± 136) fs agrees well with the theoretical value computed from Landau-Zener probabilities.

11.
J Chem Phys ; 151(2): 024306, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31301712

RESUMO

Observing changes in molecular structure requires atomic-scale Ångstrom and femtosecond spatio-temporal resolution. We use the Fourier transform (FT) variant of laser-induced electron diffraction (LIED), FT-LIED, to directly retrieve the molecular structure of H2O+ with picometer and femtosecond resolution without a priori knowledge of the molecular structure nor the use of retrieval algorithms or ab initio calculations. We identify a symmetrically stretched H2O+ field-dressed structure that is most likely in the ground electronic state. We subsequently study the nuclear response of an isolated water molecule to an external laser field at four different field strengths. We show that upon increasing the laser field strength from 2.5 to 3.8 V/Å, the O-H bond is further stretched and the molecule slightly bends. The observed ultrafast structural changes lead to an increase in the dipole moment of water and, in turn, a stronger dipole interaction between the nuclear framework of the molecule and the intense laser field. Our results provide important insights into the coupling of the nuclear framework to a laser field as the molecular geometry of H2O+ is altered in the presence of an external field.

12.
J Synchrotron Radiat ; 25(Pt 5): 1529-1540, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179194

RESUMO

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.

13.
Phys Rev Lett ; 118(18): 183201, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524692

RESUMO

Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

14.
Phys Rev Lett ; 119(2): 023201, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753333

RESUMO

The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

15.
J Chem Phys ; 146(10): 104305, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298097

RESUMO

The ultrafast transfer of excitation energy from one atom to its neighbor is observed in singly charged argon dimers in a time-resolved extreme ultraviolet (XUV)-pump IR-probe experiment. In the pump step, bound 3s-hole states in the dimer are populated by single XUV-photon ionization. The excitation-energy transfer at avoided crossings of the potential-energy curves leads to dissociation of the dimer, which is experimentally observed by further ionization with a time-delayed IR-probe pulse. From the measured pump-probe delay-dependent kinetic-energy release of coincident Ar+ + Ar+ ions, we conclude that the transfer of energy occurs on a time scale of about 800fs. This mechanism represents a fast relaxation process below the energy threshold for interatomic Coulombic decay.

16.
Faraday Discuss ; 194: 495-508, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711784

RESUMO

The migration of hydrogen atoms resulting in the isomerization of hydrocarbons is an important process which can occur on ultrafast timescales. Here, we visualize the light-induced hydrogen migration of acetylene to vinylidene in an ionic state using two synchronized 4 fs intense laser pulses. The first pulse induces hydrogen migration, and the second is used for monitoring transient structural changes via Coulomb explosion imaging. Varying the time delay between the pulses reveals the migration dynamics with a time constant of 54 ± 4 fs as observed in the H+ + H+ + CC+ channel. Due to the high temporal resolution, vibrational wave-packet motions along the CC- and CH-bonds are observed. Even though a maximum in isomerization yield for kinetic energy releases above 16 eV is measured, we find no indication for a backwards isomerization - in contrast to previous measurements. Here, we propose an alternative explanation for the maximum in isomerization yield, namely the surpassing of the transition state to the vinylidene configuration within the excited dication state.

17.
Faraday Discuss ; 194: 463-478, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711853

RESUMO

Temporal evolution of electronic and nuclear wave packets created in strong-field excitation of the carbon dioxide molecule is studied employing momentum-resolved ion spectroscopy and channel-selective Fourier analysis. Combining the data obtained with two different pump-probe set-ups, we observed signatures of vibrational dynamics in both, ionic and neutral states of the molecule. We consider far-off-resonance two-photon Raman scattering to be the most likely mechanism of vibrational excitation in the electronic ground state of the neutral CO2. Using the measured phase relation between the time-dependent yields of different fragmentation channels, which is consistent with the proposed mechanism, we suggest an intuitive picture of the underlying vibrational dynamics. For ionic states, we found signatures of both, electronic and vibrational excitations, which involve the ground and the first excited electronic states, depending on the particular final state of the fragmentation. While our results for ionic states are consistent with the recent observations by Erattupuzha et al. [J. Chem. Phys.144, 024306 (2016)], the neutral state contribution was not observed there, which we attribute to a larger bandwidth of the 8 fs pulses we used for this experiment. In a complementary measurement employing longer, 35 fs pulses in a 30 ps delay range, we study the influence of rotational excitation on our observables, and demonstrate how the coherent electronic wave packet created in the ground electronic state of the ion completely decays within 10 ps due to the coupling to rotational motion.

18.
Angew Chem Int Ed Engl ; 55(36): 10741-5, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27453360

RESUMO

The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides.

19.
Phys Rev Lett ; 110(21): 213002, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745865

RESUMO

Dissociative single ionization of H(2) induced by extreme ultraviolet photons from an attosecond pulse train has been studied in a kinematically complete experiment. Depending on the electron kinetic energy and the alignment of the molecule with respect to the laser polarization axis, we observe pronounced asymmetries in the relative emission directions of the photoelectron and the H(+) ion. The energy-dependent asymmetry pattern is explained by a semiclassical model and further validated by fully quantum mechanical calculations, both in very good agreement with the experiment.

20.
Annu Rev Phys Chem ; 63: 635-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404584

RESUMO

Free-electron lasers are fourth-generation light sources that deliver extremely intense (>10(12) photons per pulse), ultrashort (∼10(-14) s = 10 fs) light pulses at up to kilohertz repetition rates with unprecedented coherence properties and span a broad wavelength regime from soft (∼10 eV) to hard X-ray energies (∼15 keV). They thus enable a whole suite of novel experiments in molecular physics and chemistry: Inspecting radiation-induced reactions in cold molecular ions provides unprecedented insight into the photochemistry of interstellar clouds and upper planetary atmospheres; double core-hole photoelectron spectroscopy offers enhanced sensitivity for chemical analysis; the dynamics of highly excited molecular states, pumped by vacuum ultraviolet pulses, can be inspected; and vacuum ultraviolet or X-ray probe pulses generally hold the promise to trace chemical reactions along an entire reaction coordinate with atomic spatial and temporal resolution. This review intends to provide a first overview on upcoming possibilities, emerging technologies, pioneering results, and future perspectives in this exciting field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA