Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109873

RESUMO

Solar cells in superstrate arrangement need a protective cover glass as one of its main components. The effectiveness of these cells is determined by the cover glass's low weight, radiation resistance, optical clarity, and structural integrity. Damage to the cell covers brought on by exposure to UV irradiation and energetic radiation is thought to be the root cause of the ongoing issue of a reduction in the amount of electricity that can be generated by solar panels installed on spacecraft. Lead-free glasses made of xBi2O3-(40 - x)CaO-60P2O5 (x = 5, 10, 15, 20, 25, and 30 mol%) were created using the usual approach of melting at a high temperature. The amorphous nature of the glass samples was confirmed using X-ray diffraction. At energies of 81, 238, 356, 662, 911, 1173, 1332, and 2614 keV, the impact of various chemical compositions on gamma shielding in a phospho-bismuth glass structure was measured. The evaluation of gamma shielding revealed that the results of the mass attenuation coefficient of glasses increase as the Bi2O3 content increases but decrease as the photon energy increases. As a result of the study conducted on the radiation-deflecting properties of ternary glass, a lead-free low-melting phosphate glass that exhibited outstanding overall performance was developed, and the optimal composition of a glass sample was identified. The 60P2O5-30Bi2O3-10CaO glass combination is a viable option for use in radiation shielding that does not include lead.

2.
Biomedicines ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37189792

RESUMO

This study highlights the use of 89Zr-oxalate in diagnostic applications with the help of WinAct and IDAC2.1 software. It presents the biodistribution of the drug in various organs and tissues, including bone, blood, muscle, liver, lung, spleen, kidneys, inflammations, and tumors, and analyzes the maximum amount of nuclear transformation per Bq intake for each organ. The retention time of the maximum nuclear transformation and the absorbed doses of the drug in various organs and tissues are also examined. Data from clinical and laboratory studies on radiopharmaceuticals are used to estimate the coefficients of transition. The accumulation and excretion of the radiopharmaceutical in the organs is assumed to follow an exponential law. The coefficients of transition from the organs to the blood and vice versa are estimated using a combination of statistical programs and digitized data from the literature. WinAct and IDAC 2.1 software are used to calculate the distribution of the radiopharmaceutical in the human body and to estimate the absorbed doses in organs and tissues. The results of this study can provide valuable information for the biokinetic modeling of wide-spectrum diagnostic radiopharmaceuticals. The results show that 89Zr-oxalate has a high affinity for bones and a relatively low impact on healthy organs, making it helpful in targeting bone metastases. This study provides valuable information for further research on the development of this drug for potential clinical applications.

3.
Materials (Basel) ; 14(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34772153

RESUMO

A new glass system (50-x)P2O5-20B2O3-5Al2O3-25Na2O-xCoO was manufactured using a standard melt quenching procedure, where 1≤ x ≤ 12 mol%. The characteristics of boro-phosphate-glasses containing CoO have been studied. The effect of CoO on the radiation-protective properties of glasses was established. The density of the prepared glasses as a function of CoO increased. XRD was used to check the vitreous structure of samples. Fourier-transform infrared (FTIR) spectroscopy was used to study the structure of each sample. FTIR demonstrated that connections grew as CoO/P2O5 levels increased, and the FTIR spectra shifted to higher wavenumbers. The increment of CoO converts non-bridging oxygens associated with phosphate structural units into bridging oxygens. This process increases the concentration of BO4 structural units and creates new, strong and stable bonds B-O-P, i.e., there is polymerization of the boro-phosphate glass network. With an increase in the ratio of CoO/P2O5 in the produced samples, ultrasonic velocities and elastic moduli were observed to increase. The coefficients of linear and mass attenuation, the transmittance of photons in relation to the photon energy, the efficiency of radiation protection in relation to the photon energy, and the thickness of the absorber were modeled using these two methods (experimental and theoretical). From the obtained values, it can be concluded that the 12Co sample containing 12 mol% will play the most influential role in radiation protection. An increase in the content of cobalt-I oxide led to a significant increase in the linear and mass attenuation coefficient values, which directly contributes to the development of the radiation-protective properties of glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA