Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 121: 1-12, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39002812

RESUMO

induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1ß + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Inflamação , Microglia , Neurônios , Proteômica , Transcriptoma , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica/métodos , Inflamação/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Astrócitos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Diferenciação Celular , Citocinas/metabolismo , Proteoma/metabolismo , Quimiocina CXCL10/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética
2.
Brain ; 146(10): 4088-4104, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071594

RESUMO

Nuclear to cytoplasmic mislocalization and aggregation of multiple RNA-binding proteins (RBPs), including FUS, are the main neuropathological features of the majority of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal lobular degeneration (FTLD). In ALS-FUS, these aggregates arise from disease-associated mutations in FUS, whereas in FTLD-FUS, the cytoplasmic inclusions do not contain mutant FUS, suggesting different molecular mechanisms of FUS pathogenesis in FTLD that remain to be investigated. We have previously shown that phosphorylation of the C-terminal Tyr526 of FUS results in increased cytoplasmic retention of FUS due to impaired binding to the nuclear import receptor TNPO1. Inspired by the above notions, in the current study we developed a novel antibody against the C-terminally phosphorylated Tyr526 FUS (FUSp-Y526) that is specifically capable of recognizing phosphorylated cytoplasmic FUS, which is poorly recognized by other commercially available FUS antibodies. Using this FUSp-Y526 antibody, we demonstrated a FUS phosphorylation-specific effect on the cytoplasmic distribution of soluble and insoluble FUSp-Y526 in various cells and confirmed the involvement of the Src kinase family in Tyr526 FUS phosphorylation. In addition, we found that FUSp-Y526 expression pattern correlates with active pSrc/pAbl kinases in specific brain regions of mice, indicating preferential involvement of cAbl in the cytoplasmic mislocalization of FUSp-Y526 in cortical neurons. Finally, the pattern of immunoreactivity of active cAbl kinase and FUSp-Y526 revealed altered cytoplasmic distribution of FUSp-Y526 in cortical neurons of post-mortem frontal cortex tissue from FTLD patients compared with controls. The overlap of FUSp-Y526 and FUS signals was found preferentially in small diffuse inclusions and was absent in mature aggregates, suggesting possible involvement of FUSp-Y526 in the formation of early toxic FUS aggregates in the cytoplasm that are largely undetected by commercially available FUS antibodies. Given the overlapping patterns of cAbl activity and FUSp-Y526 distribution in cortical neurons, and cAbl induced sequestration of FUSp-Y526 into G3BP1 positive granules in stressed cells, we propose that cAbl kinase is actively involved in mediating cytoplasmic mislocalization and promoting toxic aggregation of wild-type FUS in the brains of FTLD patients, as a novel putative underlying mechanism of FTLD-FUS pathophysiology and progression.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , DNA Helicases/metabolismo , Degeneração Lobar Frontotemporal/patologia , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas Proto-Oncogênicas c-abl
3.
Brain ; 145(2): 684-699, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34534264

RESUMO

Repeat expansions in the C9orf72 gene are a common cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, two devastating neurodegenerative disorders. One of the proposed mechanisms of GGGGCC repeat expansion is their translation into non-canonical dipeptide repeats, which can then accumulate as aggregates and contribute to these pathologies. There are five different dipeptide repeat proteins (polyGA, polyGR, polyPR, polyPA and polyGP), some of which are known to be neurotoxic. In the present study, we used BioID2 proximity labelling to identify the interactomes of all five dipeptide repeat proteins consisting of 125 repeats each. We identified 113 interacting partners for polyGR, 90 for polyGA, 106 for polyPR, 25 for polyPA and 27 for polyGP. Gene Ontology enrichment analysis of the proteomic data revealed that these target interaction partners are involved in a variety of functions, including protein translation, signal transduction pathways, protein catabolic processes, amide metabolic processes and RNA-binding. Using autopsy brain tissue from patients with C9orf72 expansion complemented with cell culture analysis, we evaluated the interactions between polyGA and valosin containing protein (VCP). Functional analysis of this interaction revealed sequestration of VCP with polyGA aggregates, altering levels of soluble valosin-containing protein. VCP also functions in autophagy processes, and consistent with this, we observed altered autophagy in cells expressing polyGA. We also observed altered co-localization of polyGA aggregates and p62 in cells depleted of VCP. All together, these data suggest that sequestration of VCP with polyGA aggregates contributes to the loss of VCP function, and consequently to alterations in autophagy processes in C9orf72 expansion disorders.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Dipeptídeos/genética , Demência Frontotemporal/patologia , Humanos , Proteínas/genética , Proteínas/metabolismo , Proteômica , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
4.
J Cell Sci ; 132(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30745340

RESUMO

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Neurônios Motores/fisiologia , Complexos Multiproteicos/metabolismo , Mutação/genética , RNA Nuclear/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intranuclear , Camundongos , Fator de Processamento Associado a PTB/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nuclear/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos
5.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801451

RESUMO

Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells' direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Gases em Plasma/farmacologia , Plasma/química , Animais , Humanos
6.
Hum Mol Genet ; 27(14): 2466-2476, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29701768

RESUMO

Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204+6T>C) that negatively affects the definition of exon 20 in the elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, exon-specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.


Assuntos
Proteínas de Transporte/genética , Disautonomia Familiar/terapia , Terapia Genética , RNA Nuclear Pequeno/genética , Processamento Alternativo/genética , Animais , Proteínas de Transporte/uso terapêutico , Dependovirus/genética , Modelos Animais de Doenças , Disautonomia Familiar/genética , Disautonomia Familiar/fisiopatologia , Éxons/genética , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons/genética , Camundongos , Camundongos Transgênicos , Splicing de RNA/genética , RNA Nuclear Pequeno/uso terapêutico , Fatores de Elongação da Transcrição
7.
Molecules ; 24(11)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167364

RESUMO

Currently available drugs for treatment of glioblastoma, the most aggressive brain tumor, remain inefficient, thus a plethora of natural compounds have already been shown to have antimalignant effects. However, these have not been tested for their impact on tumor cells in their microenvironment-simulated cell models, e.g., mesenchymal stem cells in coculture with glioblastoma cell U87 (GB). Mesenchymal stem cells (MSC) chemotactically infiltrate the glioblastoma microenvironment. Our previous studies have shown that bone-marrow derived MSCs impair U87 growth and invasion via paracrine and cell-cell contact-mediated cross-talk. Here, we report on a plant-derived protein, obtained from Crataeva tapia tree Bark Lectin (CrataBL), having protease inhibitory/lectin activities, and demonstrate its effects on glioblastoma cells U87 alone and their cocultures with MSCs. CrataBL inhibited U87 cell invasion and adhesion. Using a simplified model of the stromal microenvironment, i.e., GB/MSC direct cocultures, we demonstrated that CrataBL, when added in increased concentrations, caused cell cycle arrest and decreased cocultured cells' viability and proliferation, but not invasion. The cocultured cells' phenotypes were affected by CrataBL via a variety of secreted immunomodulatory cytokines, i.e., G-CSF, GM-CSF, IL-6, IL-8, and VEGF. We hypothesize that CrataBL plays a role by boosting the modulatory effects of MSCs on these glioblastoma cell lines and thus the effects of this and other natural lectins and/or inhibitors would certainly be different in the tumor microenvironment compared to tumor cells alone. We have provided clear evidence that it makes much more sense testing these potential therapeutic adjuvants in cocultures, mimicking heterogeneous tumor-stroma interactions with cancer cells in vivo. As such, CrataBL is suggested as a new candidate to approach adjuvant treatment of this deadly tumor.


Assuntos
Capparaceae/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/farmacologia , Lectinas de Plantas/farmacologia , Inibidores de Proteases/farmacologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/biossíntese , Glioblastoma/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Metaloproteases/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Lectinas de Plantas/química , Inibidores de Proteases/química
8.
Exp Cell Res ; 356(1): 64-73, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412241

RESUMO

Low-grade, pilocytic astrocytomas are treated by resection, but additional therapy is necessary for those tumors with anaplastic features. Arsenic trioxide (As2O3) is emerging as an effective chemotherapeutic agent for treatment of malignant glioblastoma multiforme, where Cathepsin L silencing enables lower, less harmful As2O3 concentrations to achieve the desired cytotoxic effect. Here, we evaluated the effects of As2O3 combined with stable Cathepsin L shRNA silencing on cell viability/metabolic activity, and apoptosis in primary cultures of recurrent malignantly transformed pilocytic astrocytoma (MPA). These cells expressed high Cathepsin L levels, and when grown as monolayers and spheroids, they were more resistant to As2O3 than the U87MG glioblastoma cell line. Caspases 3/7 activity in MPA58 spheroids was not significantly affected by As2O3, possibly due to higher chemoresistance of primary biopsy tissue of less malignant astrocytoma versus the malignant U87MG cell line. However, As2O3 treatment was cytotoxic to MPA spheroids after silencing of Cathepsin L expression. While Cathepsin L silencing only slightly decreased the live/dead cell ratio in As2O3-treated MPA-si spheroids under our experimental conditions, there was an increase in As2O3-mediated apoptosis in MPA-si spheroids, as indicated by elevated caspases 3/7 activity. Therefore, Cathepsin L silencing by gene manipulation can be applied when a more aggressive approach is needed in treatment of pilocytic astrocytomas with anaplastic features.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Astrocitoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Caspase 3/metabolismo , Caspase 7/metabolismo , Catepsina L/genética , Óxidos/farmacologia , Neoplasias da Medula Espinal/tratamento farmacológico , Animais , Apoptose/genética , Trióxido de Arsênio , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Ativação Enzimática/imunologia , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Óxidos/toxicidade , Interferência de RNA , RNA Interferente Pequeno/genética , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biol Chem ; 398(7): 709-719, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28002021

RESUMO

Proteolytic enzymes are highly relevant in different processes of cancer progression. Their interplay with other signalling molecules such as cytokines represents important regulation of multicellular cross-talk. In this review, we discuss protease regulation mechanisms of cytokine signalling in various types of cancer. Additionally, we highlight the reverse whereby cytokines have an impact on protease expression in an autocrine and paracrine manner, representing complex feedback mechanisms among multiple members of these two protein families. The relevance of the protease-cytokine axis is illustrated in glioblastoma, where interactions between normal mesenchymal stem cells and cancer cells play an important role in this very malignant form of brain cancer.


Assuntos
Comunicação Celular , Citocinas/metabolismo , Neoplasias/patologia , Peptídeo Hidrolases/metabolismo , Células Estromais/patologia , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Transdução de Sinais
10.
Cytometry A ; 89(4): 365-75, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26671187

RESUMO

The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.


Assuntos
Bradicinina/metabolismo , Glioblastoma/metabolismo , Células-Tronco Mesenquimais/citologia , Receptores da Bradicinina/metabolismo , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Transdução de Sinais/fisiologia , Regulação para Cima
11.
Cytometry A ; 87(9): 806-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26189784

RESUMO

Aptamers are short single-stranded nucleic acids (RNA or ssDNA), identified by an in vitro selection process, denominated SELEX, from a partially random oligonucleotide library. They bind to a molecular target, a protein or other complex macromolecular structures of interest with high affinity and specificity, comparable to those of antibodies. Recently, aptamer selection protocols were developed for targeting living cells, including tumors. Chemical modifications of the aptamers and modalities of their detection and delivery systems are already available with high selectivity and targeting ability for the desired cancer cell type, making them promising for diagnosis and therapy. Glioblastoma multiformae represents the most malignant and fatal stage of glioma, and is also the most frequent brain tumor. Glioblastoma-specific aptamers were developed by either targeting the whole cell surface or known glioma biomarkers. These aptamers may gain importance for imaging, tumor cell isolation from biopsies and drug delivery. In biomedical imaging techniques, aptamers coupled with radionuclide or fluorescent labels, bioconjugates and nanoparticles offer an advanced, noninvasive manner for defining the glioblastoma tissue border. Though single modality aptamer imaging probes have some limitations, these are overcome by the use of multimodal probes. Due to selectivity and chemical characteristics, aptamers can be coupled to functionalized nanoparticles and loaded with a drug, appeared promising for in vivo targeting of glioblastoma. Finally, aptamers are effective mediators for gene silencing when coupled to small interfering RNA and a viral vector, thus providing a novel tool with enhanced targeting capability in drug delivery, designed for tailored treatment of glioblastoma patients.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/genética , Neoplasias Encefálicas/genética , Diagnóstico por Imagem/métodos , Marcação de Genes/métodos , Glioblastoma/genética , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Técnica de Seleção de Aptâmeros/métodos
12.
Exp Cell Res ; 319(17): 2637-48, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23968587

RESUMO

Despite improved treatment options, glioblastoma multiforme (GBM) remains the most aggressive brain tumour with the shortest post-diagnostic survival. Arsenite (As2O3) is already being used in the treatment of acute promyelocytic leukaemia (APL), yet its effects on GBM have not been evaluated in detail. In U87MG cell monolayers, we have previously shown that arsenite cytotoxicity significantly increases upon transient inhibition of lysosomal protease Cathepsin L (CatL). As multicellular spheroids more closely represent in vivo tumours, we aimed to evaluate the impact of permanent CatL silencing on arsenite treatment in U87MG spheroids. CatL was stably silenced using shRNA expression plasmid packed lentiviruses. By using metabolic- and cell viability assays, we demonstrated that long-term CatL silencing significantly increased arsenite cytotoxicity in U87MG spheroids. Silenced CatL also increased arsenite-mediated apoptosis in spheroids via elevated p53 expression, Bax/Bcl2 ratio and caspase 3/7 activity, though with lower efficacy than in monolayers. Arsenite cytotoxicity was enhanced by lower CatL activity, since similar cytotoxicity increase was also observed using the novel CatL inhibitor AT094. The results have significant translational impact, since stable CatL silencing would enable the application of lower systemic doses of arsenite to achieve the desired cytotoxic effects on GBMs in vivo.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Catepsina L/antagonistas & inibidores , Inativação Gênica , Glioblastoma/metabolismo , Óxidos/toxicidade , Esferoides Celulares/efeitos dos fármacos , Trióxido de Arsênio , Arsenicais , Neoplasias Encefálicas/patologia , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/patologia , Humanos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
13.
Radiol Oncol ; 48(3): 257-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177240

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. MATERIALS AND METHODS: We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. RESULTS: We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. CONCLUSIONS: Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients.

14.
J Forensic Sci ; 69(3): 1094-1101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491758

RESUMO

The aim of the present study was to investigate the effects of time, temperature, and burial in a natural environment on the viability of chondrocytes in porcine femoral condyles using confocal laser scanning microscopy. Hind trotters from 10 pigs were buried or left unburied. Samples were collected daily and stained with a combination of vital dyes (calcein-AM and ethidium homodimer-1). The chondrocytes showed an intense staining corresponding to their vitality. In the first 3 days, viability decreased slowly and showed no statistical difference between buried and unburied samples. After the first 3 days, it decreased rapidly, with the viability of the buried samples being 66% on day 4, decreasing to 25% on day 8 and to 16% on day 10, while in the unburied samples it decreased to 43% on day 4, 13% on day 8 and 5% on day 10. Our results indicate a time, temperature, and burial dependent decrease in chondrocyte viability and suggest the use of chondrocyte viability as a marker for estimating PMI in both the natural environment and in animals, as well as its potential use in humans.


Assuntos
Sepultamento , Cartilagem Articular , Sobrevivência Celular , Condrócitos , Microscopia Confocal , Mudanças Depois da Morte , Temperatura , Animais , Condrócitos/citologia , Cartilagem Articular/citologia , Suínos , Fatores de Tempo , Estações do Ano , Patologia Legal , Corantes Fluorescentes , Fêmur/citologia
15.
Front Immunol ; 15: 1458967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351233

RESUMO

Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.


Assuntos
Herpesvirus Humano 3 , Células-Tronco Pluripotentes Induzidas , Humanos , Herpesvirus Humano 3/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/virologia , Imunidade Inata , Neurônios/imunologia , Neurônios/virologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Células Cultivadas , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Evasão da Resposta Imune , Citocinas/metabolismo , Citocinas/imunologia , Astrócitos/imunologia , Astrócitos/virologia , Astrócitos/metabolismo , Transdução de Sinais/imunologia
16.
J Lipid Res ; 54(6): 1653-1661, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23509403

RESUMO

Cytochrome P450 lanosterol 14α-demethylase (CYP51) and its products, meiosis-activating sterols (MASs), were hypothesized by previous in vitro studies to have an important role in regulating meiosis and reproduction. To test this in vivo, we generated a conditional male germ cell-specific knockout of the gene Cyp51 in the mouse. High excision efficiency of Cyp51 allele in germ cells resulted in 85-89% downregulation of Cyp51 mRNA and protein levels in germ cells. Quantitative metabolic profiling revealed significantly higher levels of CYP51 substrates lanosterol and 24,25-dihydrolanosterol and substantially diminished levels of MAS, the immediate products of CYP51. However, germ cell-specific ablation of Cyp51, leading to lack of MAS, did not affect testicular morphology, daily sperm production, or reproductive performance in males. It is plausible that due to the similar structures of cholesterol intermediates, previously proposed biological function of MAS in meiosis progression can be replaced by some other yet-unidentified functionally redundant lipid molecule(s). Our results using the germ cell-specific knockout model provide first in vivo evidence that the de novo synthesis of MAS and cholesterol in male germ cells is most likely not essential for spermatogenesis and reproduction and that MASs, originating from germ cells, do not cell-autonomously regulate spermatogenesis and fertility.


Assuntos
Lanosterol/análogos & derivados , Meiose/fisiologia , Espermatogênese/fisiologia , Espermatozoides/enzimologia , Esterol 14-Desmetilase/metabolismo , Animais , Lanosterol/genética , Lanosterol/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/citologia , Esterol 14-Desmetilase/genética
17.
Cells ; 12(16)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626851

RESUMO

Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.


Assuntos
Encéfalo , Tecido Nervoso , Idoso , Humanos , Proteínas Proto-Oncogênicas c-abl , Neurônios , Astrócitos
18.
J Biol Chem ; 286(33): 29086-29097, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21705796

RESUMO

Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51(-/-) mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.


Assuntos
Fenótipo de Síndrome de Antley-Bixler , Modelos Animais de Doenças , Esterol 14-Desmetilase , Animais , Colesterol/biossíntese , Colesterol/genética , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/genética , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Lanosterol/análogos & derivados , Lanosterol/genética , Lanosterol/metabolismo , Camundongos , Camundongos Knockout , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pericárdio/enzimologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Tretinoína/metabolismo
19.
BMC Bioinformatics ; 12: 416, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22029475

RESUMO

BACKGROUND: In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases). Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. RESULTS: We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. CONCLUSIONS: Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Software , Tecido Adiposo/patologia , Autofagia , Senescência Celular , Humanos , Células-Tronco Mesenquimais/patologia , Células-Tronco/patologia , Fluxo de Trabalho
20.
Cells ; 9(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731393

RESUMO

Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder, characterized by cytoplasmic inclusions of RNA-binding protein TDP-43. Despite decades of research and identification of more than 50 genes associated with amyotrophic lateral sclerosis (ALS), the cause of TDP-43 translocation from the nucleus and its aggregation in the cytoplasm still remains unknown. Our study addressed the impact of selected ALS-associated genes on TDP-43 aggregation behavior in wild-type and aggregation prone TDP-43 in vitro cell models. These were developed by deleting TDP-43 nuclear localization signal and stepwise shortening its low-complexity region. The SH-SY5Y cells were co-transfected with the constructs of aggregation-prone TDP-43 and wild-type or mutant ALS-associated genes hnRNPA1, MATR3, VCP or UBQLN2. The investigated genes displayed a unique impact on TDP-43 aggregation, generating distinct types of cytoplasmic inclusions, similar to those already described as resembling prion strains, which could represent the basis for neurodegenerative disease heterogeneity.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas de Ligação a DNA/genética , Doenças Neurodegenerativas/genética , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA