Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 288(20): 14059-14067, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23564452

RESUMO

Scap is a polytopic protein of the endoplasmic reticulum (ER) that controls cholesterol homeostasis by transporting sterol regulatory element-binding proteins (SREBPs) from the ER to the Golgi complex. Scap has eight transmembrane helices (TM) joined by four small hydrophilic loops and three large loops. Two of the large loops (Loops 1 and 7) are in the ER lumen, and the other large loop (Loop 6) faces the cytosol where it binds COPII proteins that initiate transport to Golgi. Cholesterol binding to Loop 1 alters the configuration of Loop 6, precluding COPII binding and preventing the exit of Scap from the ER. Here, we create a point mutation (Y640S) in luminal Loop 7 that prevents Scap movement to Golgi. Trypsin cleavage assays show that Loop 6 of Scap(Y640S) is always in the configuration that precludes COPII binding, even in the absence of cholesterol. When expressed separately by co-transfection, the NH2-terminal portion of Scap (containing TM helices 1-6, including Loop 1) binds to the COOH-terminal portion (containing TM helices 7-8 and Loop 7) as determined by co-immunoprecipitation. This binding does not occur when Loop 7 contains the Y640S mutation. Co-immunoprecipitation is also abolished by a point mutation in Loop 1 (Y234A) that also prevents Scap movement. These data suggest that Scap Loop 1 must interact with Loop 7 to maintain Loop 6 in the configuration that permits COPII binding. These results help explain the operation of Scap as a sterol sensor.


Assuntos
Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Sequência de Aminoácidos , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Meios de Cultura , Retículo Endoplasmático/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Mutação Puntual , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Esteróis/metabolismo
2.
J Biol Chem ; 286(20): 18002-12, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454655

RESUMO

Cellular cholesterol homeostasis is maintained by Scap, an endoplasmic reticulum (ER) protein with eight transmembrane helices. In cholesterol-depleted cells, Scap transports sterol regulatory element-binding proteins (SREBPs) to the Golgi, where the active fragment of SREBP is liberated by proteases so that it can activate genes for cholesterol synthesis. When ER cholesterol increases, Scap binds cholesterol, and this changes the conformation of cytosolic Loop 6, which contains the binding site for COPII proteins. The altered conformation precludes COPII binding, abrogating movement to the Golgi. Consequently, cholesterol synthesis declines. Here, we identify the cholesterol-binding site on Scap as Loop 1, a 245-amino acid sequence that projects into the ER lumen. Recombinant Loop 1 binds sterols with a specificity identical to that of the entire Scap membrane domain. When tyrosine 234 in Loop 1 is mutated to alanine, Loop 6 assumes the cholesterol-bound conformation, even in sterol-depleted cells. As a result, full-length Scap(Y234A) cannot mediate SREBP processing in transfected cells. These results indicate that luminal Loop 1 of Scap controls the conformation of cytosolic Loop 6, thereby determining whether cells produce cholesterol.


Assuntos
Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Substituição de Aminoácidos , Animais , Colesterol/genética , Cricetinae , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética
3.
Org Lett ; 9(11): 2167-70, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17451249

RESUMO

Pt(II)-catalyzed cycloisomerization of aziridinyl propargylic esters affords 1,2-dihydropyridines with regiodefined installation of substituents. A mild conversion of the 1,2-dihydropyridines to the corresponding substituted pyridines as well as chirality retention from the aziridinyl propargylic ester substrates have been demonstrated.


Assuntos
Di-Hidropiridinas/síntese química , Platina/química , Catálise , Modelos Moleculares , Estrutura Molecular
4.
Mol Endocrinol ; 29(9): 1320-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26192107

RESUMO

Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.


Assuntos
Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , PPAR gama/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno , Rosiglitazona , Tiazolidinedionas/farmacologia , Enzimas de Conjugação de Ubiquitina/genética
5.
Mol Endocrinol ; 28(3): 395-405, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24438340

RESUMO

Steroid receptor coactivator 1 (SRC-1) drives diverse gene expression programs necessary for the dynamic regulation of cancer metastasis, inflammation and gluconeogenesis, pointing to its overlapping roles as an oncoprotein and integrator of cell metabolic programs. Nutrient utilization has been intensely studied with regard to cellular adaptation in both cancer and noncancerous cells. Nonproliferating cells consume glucose through the citric acid cycle to generate NADH to fuel ATP generation via mitochondrial oxidative phosphorylation. In contrast, cancer cells undergo metabolic reprogramming to support rapid proliferation. To generate lipids, nucleotides, and proteins necessary for cell division, most tumors switch from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg Effect. Because SRC-1 is a key coactivator responsible for driving a hepatic gluconeogenic program under fasting conditions, we asked whether SRC-1 responds to alterations in nutrient availability to allow for adaptive metabolism. Here we show SRC-1 is stabilized by the 26S proteasome in the absence of glucose. RNA profiling was used to examine the effects of SRC-1 perturbation on gene expression in the absence or presence of glucose, revealing that SRC-1 affects the expression of complex I of the mitochondrial electron transport chain, a set of enzymes responsible for the conversion of NADH to NAD(+). NAD(+) and NADH were subsequently identified as metabolites that underlie SRC-1's response to glucose deprivation. Knockdown of SRC-1 in glycolytic cancer cells abrogated their ability to grow in the absence of glucose consistent with SRC-1's role in promoting cellular adaptation to reduced glucose availability.


Assuntos
Glucose/metabolismo , Homeostase , NAD/metabolismo , Coativador 1 de Receptor Nuclear/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Expressão Gênica , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise
6.
Cell Metab ; 12(2): 166-73, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20674861

RESUMO

Water-soluble Niemann-Pick C2 (NPC2) and membrane-bound NPC1 are cholesterol-binding lysosomal proteins required for export of lipoprotein-derived cholesterol from lysosomes. The binding site in NPC1 is located in its N-terminal domain (NTD), which projects into the lysosomal lumen. Here we perform alanine-scanning mutagenesis to identify residues in NPC2 that are essential for transfer of cholesterol to NPC1(NTD). Transfer requires three residues that form a patch on the surface of NPC2. We previously identified a patch of residues on the surface of NPC1(NTD) that are required for transfer. We present a model in which these two surface patches on NPC2 and NPC1(NTD) interact, thereby opening an entry pore on NPC1(NTD) and allowing cholesterol to transfer without passing through the water phase. We refer to this transfer as a hydrophobic handoff and hypothesize that this handoff is essential for cholesterol export from lysosomes.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Glicoproteínas/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Alanina/química , Alanina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos e Proteínas de Sinalização Intracelular , Mutagênese , Proteína C1 de Niemann-Pick , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA