Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 621(7977): E1-E3, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674001
2.
Nature ; 517(7535): 485-8, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25383536

RESUMO

The incompleteness of the fossil record obscures the origin of many of the more derived clades of vertebrates. One such group is the Ichthyopterygia, a clade of obligatory marine reptiles that appeared in the Early Triassic epoch, without any known intermediates. Here we describe a basal ichthyosauriform from the upper Lower Triassic (about 248 million years ago) of China, whose primitive skeleton indicates possible amphibious habits. It is smaller than ichthyopterygians and had unusually large flippers that probably allowed limited terrestrial locomotion. It also retained characteristics of terrestrial diapsid reptiles, including a short snout and body trunk. Unlike more-derived ichthyosauriforms, it was probably a suction feeder. The new species supports the sister-group relationships between ichthyosauriforms and Hupehsuchia, the two forming the Ichthyosauromorpha. Basal ichthyosauromorphs are known exclusively from south China, suggesting that the clade originated in the region, which formed a warm and humid tropical archipelago in the Early Triassic. The oldest unequivocal record of a sauropterygian is also from the same stratigraphic unit of the region.


Assuntos
Estruturas Animais/anatomia & histologia , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Animais , China , Fósseis , Crânio/anatomia & histologia
3.
Ecol Lett ; 21(6): 938-939, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29611259

RESUMO

Miller & Wiens (2017) claim that low marine as compared with terrestrial diversity results from more frequent extinctions and insufficient time for diversification in marine clades. Their data on marine amniotes are unrepresentative of marine diversity, their analysis of clade dynamics is flawed, and they ignore previously proposed explanations for the diversity difference.


Assuntos
Biodiversidade , Oceanos e Mares , Fatores de Tempo
4.
Proc Biol Sci ; 284(1854)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515201

RESUMO

The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates.


Assuntos
Evolução Biológica , Extinção Biológica , Répteis , Animais , Teorema de Bayes , Fósseis , Filogenia
6.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26378218

RESUMO

The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index -0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Caracteres Sexuais , Animais , Tamanho Corporal , Feminino , Úmero/anatomia & histologia , Masculino , Razão de Masculinidade
7.
Biol Lett ; 11(1): 20140709, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25631228

RESUMO

Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets-even across large phylogenetic distances-are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.


Assuntos
Evolução Biológica , Dieta , Crânio/anatomia & histologia , Dente/anatomia & histologia , Animais , Cetáceos/anatomia & histologia , Cetáceos/fisiologia , Filogenia , Répteis/anatomia & histologia , Répteis/fisiologia
8.
PeerJ ; 12: e16978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436015

RESUMO

Extremes in organismal size have broad interest in ecology and evolution because organismal size dictates many traits of an organism's biology. There is particular fascination with identifying upper size extremes in the largest vertebrates, given the challenges and difficulties of measuring extant and extinct candidates for the largest animal of all time, such as whales, terrestrial non-avian dinosaurs, and extinct marine reptiles. The discovery of Perucetus colossus, a giant basilosaurid whale from the Eocene of Peru, challenged many assumptions about organismal extremes based on reconstructions of its body weight that exceeded reported values for blue whales (Balaenoptera musculus). Here we present an examination of a series of factors and methodological approaches to assess reconstructing body weight in Perucetus, including: data sources from large extant cetaceans; fitting published body mass estimates to body outlines; testing the assumption of isometry between skeletal and body masses, even with extrapolation; examining the role of pachyostosis in body mass reconstructions; addressing method-dependent error rates; and comparing Perucetus with known physiological and ecological limits for living whales, and Eocene oceanic productivity. We conclude that Perucetus did not exceed the body mass of today's blue whales. Depending on assumptions and methods, we estimate that Perucetus weighed 60-70 tons assuming a length 17 m. We calculated larger estimates potentially as much as 98-114 tons at 20 m in length, which is far less than the direct records of blue whale weights, or the 270 ton estimates that we calculated for body weights of the largest blue whales measured by length.


Assuntos
Balaenoptera , Dinossauros , Animais , Fósseis , Cetáceos , Peso Corporal
9.
BMC Evol Biol ; 13: 226, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24127991

RESUMO

It has been hypothesized that sperm whale predation is the driver of eye size evolution in giant squid. Given that the eyes of giant squid have the size expected for a squid this big, it is likely that any enhanced ability of giant squid to detect whales is an exaptation tied to their body size. Future studies should target the mechanism behind the evolution of large body size, not eye size. Reconstructions of the evolutionary history of selective regime, eye size, optical performance, and body size will improve the understanding of the evolution of large eyes in large ocean animals.


Assuntos
Evolução Biológica , Decapodiformes/anatomia & histologia , Decapodiformes/genética , Animais , Tamanho Corporal , Decapodiformes/fisiologia , Olho , Tamanho do Órgão , Comportamento Predatório , Cachalote , Visão Ocular , Baleias
10.
BMC Evol Biol ; 13: 45, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23418818

RESUMO

BACKGROUND: The eyes of giant and colossal squid are among the largest eyes in the history of life. It was recently proposed that sperm whale predation is the main driver of eye size evolution in giant squid, on the basis of an optical model that suggested optimal performance in detecting large luminous visual targets such as whales in the deep sea. However, it is poorly understood how the eye size of giant and colossal squid compares to that of other aquatic organisms when scaling effects are considered. RESULTS: We performed a large-scale comparative study that included 87 squid species and 237 species of acanthomorph fish. While squid have larger eyes than most acanthomorphs, a comparison of relative eye size among squid suggests that giant and colossal squid do not have unusually large eyes. After revising constants used in a previous model we found that large eyes perform equally well in detecting point targets and large luminous targets in the deep sea. CONCLUSIONS: The eyes of giant and colossal squid do not appear exceptionally large when allometric effects are considered. It is probable that the giant eyes of giant squid result from a phylogenetically conserved developmental pattern manifested in very large animals. Whatever the cause of large eyes, they appear to have several advantages for vision in the reduced light of the deep mesopelagic zone.


Assuntos
Decapodiformes/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Animais , Evolução Biológica , Decapodiformes/genética , Decapodiformes/fisiologia , Luz , Fenômenos Fisiológicos Oculares , Tamanho do Órgão , Comportamento Predatório , Visão Ocular , Baleias/fisiologia
11.
PeerJ ; 11: e15957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641602

RESUMO

Body mass is arguably the most important characteristic of an organism, yet it is often not available in biological samples that have been skeletonized, liquid-preserved, or fossilized. The lack of information is especially problematic for fossil species, for which individuals with body mass information are not available anywhere. Multiple methods are available for estimating the body mass of fossil terrestrial vertebrates but those for their marine counterparts are limited. Paleomass is a software tool for estimating the body mass of marine vertebrates from their orthogonal silhouettes through bracketing. It generates a set of two 3D models from these silhouettes, assuming superelliptical body cross-sections with different exponent values. By setting the exponents appropriately, it is possible to bracket the true volume of the animal between those of the two models. The original version phased out together with the language platform it used. A new version is reported here as an open-source package based on the R scripting language. It inherits the underlying principles of the original version but has been completely rewritten with a new architecture. For example, it first produces 3D mesh models of the animal and then measures their volumes and areas with the VCG library, unlike the original version that did not produce a 3D model but instead computed the volume and area segment by segment using parametric equations. The new version also exports 3D models in polygon meshes, allowing later tests by other software. Other improvements include the use of NACA foil sections for hydrofoils such as flippers, and optional interpolation with local regression. The software has a high accuracy, with the mean absolute errors of 1.33% when the silhouettes of the animals are known.


Assuntos
Composição Corporal , Fósseis , Animais , Biblioteca Gênica , Idioma , Vertebrados
12.
Sci Rep ; 13(1): 16664, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794094

RESUMO

Tunas, lamnid sharks, modern whales, and derived ichthyosaurs converged on the thunniform body plan, with a fusiform body, lunate caudal fin, compressed peduncle, and peduncle joint. This evolutionary convergence has been studied for a long time but little is known about whether all four clades share any skeletal characteristics. Comparisons of vertebral centrum dimensions along the body reveal that the four clades indeed share three skeletal characteristics (e.g., thick vertebral column for its length), while an additional feature is shared by cetaceans, lamnid sharks, and ichthyosaurs and two more by lamnid sharks and ichthyosaurs alone. These vertebral features are all related to the mechanics of thunniform swimming through contributions to posterior concentration of tail-stem oscillation, tail stem stabilization, peduncle joint flexibility, and caudal fin angle fixation. Quantitative identifications of these features in fossil vertebrates would allow an inference of whether they were a thunniform swimmer. Based on measurements in the literature, mosasaurs lacked these features and were probably not thunniform swimmers, whereas a Cretaceous lamniform shark had a mosaic of thunniform and non-thunniform features. The evolution of thunniform swimming appears to be linked with the evolution of prey types and, in part, niche availability through geologic time.


Assuntos
Tubarões , Atum , Animais , Baleias , Ecossistema , Natação
13.
J Morphol ; 284(1): e21537, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420566

RESUMO

The link between claw morphology and function has been historically difficult to quantify, analyze, and interpret. A confounding factor is the ambiguous morphological relationship between the ungual and the sheath and whether one structure or the other is more useful for inferring function from morphology. In this study, the functional morphology of vertebrate claws is analyzed using sheath and ungual measurements taken from modern claw specimens spanning birds and mammals. Claw measurements were chosen for their potential biomechanical significance and a revised, expanded categorization of claw function is used. When corresponding claw measurements from the ungual and sheath are compared independently, some features are highly correlated whereas others are not. A principal component analysis of the claw measurements reveals that some of the morphological disparity is related to functional differences; however, different functional categories are not clearly separated based solely on morphology. A linear discriminant analysis incorporating a supervised dimensionality reduction method (J-function) successfully classifies 94.52% of the claw specimens to their documented functional categories. When the posterior probabilities of each classification are examined, and the next highest probabilities are considered, the analysis can successfully classify 98.63% of the claw specimens. Sheath measurements perform better than ungual measurements but combining measurements from both structures perform better than considering either structure individually. Both structures contribute valuable morphological information when it comes to inferring claw function from morphology.


Assuntos
Casco e Garras , Animais , Aves/anatomia & histologia , Mamíferos
14.
PeerJ ; 10: e13569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855428

RESUMO

Diversification following the end-Permian mass extinction marks the initiation of Mesozoic reptile dominance and of modern marine ecosystems, yet major clades are best known from the Middle Triassic suggesting delayed recovery, while Early Triassic localities produce poorly preserved specimens or have restricted diversity. Here we describe Pomolispondylus biani gen. et sp. nov. from the Early Triassic Nanzhang-Yuan'an Fauna of China assigned to Saurosphargiformes tax. nov., a clade known only from the Middle Triassic or later, which includes Saurosphargidae, and likely is the sister taxon to Sauropterygia. Pomolispondylus biani is allied to Saurosphargidae by the extended transverse processes of dorsal vertebrae and a low, table-like dorsal surface on the neural spine; however, it does not have the typical extensive osteoderms. Rather an unusual tuberous texture on the dorsal neural spine and rudimentary ossifications lateral to the gastralia are observed. Discovery of Pomolispondylus biani extends the known range of Saurosphargiformes and increases the taxic and ecological diversity of the Nanzhang-Yuan'an Fauna. Its small size fills a different ecological niche with respect to previously found species, but the overall food web remains notably different in structure to Middle Triassic and later ecosystems, suggesting this fauna represents a transitional stage during recovery rather than its endpoint.


Assuntos
Ecossistema , Fósseis , Animais , Filogenia , Répteis/anatomia & histologia , China
15.
Biol Rev Camb Philos Soc ; 96(5): 1769-1798, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33904243

RESUMO

Marine reptiles and mammals are phylogenetically so distant from each other that their marine adaptations are rarely compared directly. We reviewed ecophysiological features in extant non-avian marine tetrapods representing 31 marine colonizations to test whether there is a common pattern across higher taxonomic groups, such as mammals and reptiles. Marine adaptations in tetrapods can be roughly divided into aquatic and haline adaptations, each of which seems to follow a sequence of three steps. In combination, these six categories exhibit five steps of marine adaptation that apply across all clades except snakes: Step M1, incipient use of marine resources; Step M2, direct feeding in the saline sea; Step M3, water balance maintenance without terrestrial fresh water; Step M4, minimized terrestrial travel and loss of terrestrial feeding; and Step M5, loss of terrestrial thermoregulation and fur/plumage. Acquisition of viviparity is not included because there is no known case where viviparity evolved after a tetrapod lineage colonized the sea. A similar sequence is found in snakes but with the haline adaptation step (Step M3) lagging behind aquatic adaptation (haline adaptation is Step S5 in snakes), most likely because their unique method of water balance maintenance requires a supply of fresh water. The same constraint may limit the maximum body size of fully marine snakes. Steps M4 and M5 in all taxa except snakes are associated with skeletal adaptations that are mechanistically linked to relevant ecophysiological features, allowing assessment of marine adaptation steps in some fossil marine tetrapods. We identified four fossil clades containing members that reached Step M5 outside of stem whales, pinnipeds, sea cows and sea turtles, namely Eosauropterygia, Ichthyosauromorpha, Mosasauroidea, and Thalattosuchia, while five other clades reached Step M4: Saurosphargidae, Placodontia, Dinocephalosaurus, Desmostylia, and Odontochelys. Clades reaching Steps M4 and M5, both extant and extinct, appear to have higher species diversity than those only reaching Steps M1 to M3, while the total number of clades is higher for the earlier steps. This suggests that marine colonizers only diversified greatly after they minimized their use of terrestrial resources, with many lineages not reaching these advanced steps. Historical patterns suggest that a clade does not advance to Steps M4 and M5 unless these steps are reached early in the evolution of the clade. Intermediate forms before a clade reached Steps M4 and M5 tend to become extinct without leaving extant descendants or fossil evidence. This makes it difficult to reconstruct the evolutionary history of marine adaptation in many clades. Clades that reached Steps M4 and M5 tend to last longer than other marine tetrapod clades, sometimes for more than 100 million years.


Assuntos
Evolução Biológica , Fósseis , Adaptação Fisiológica , Animais , Bovinos , Feminino , Filogenia , Répteis/anatomia & histologia , Répteis/genética
16.
J Morphol ; 282(3): 449-471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393115

RESUMO

The link between claw morphology and function has been historically difficult to quantify, analyze, and interpret. In this study, the functional morphology of vertebrate claws is analyzed using measurements taken from 80 modern claw specimens spanning birds, mammals, and one reptile. Claw measurements were chosen for their potential biomechanical significance and a revised, expanded categorization of claw function is defined and used. This categorization scheme is the result of an extensive literature review and is based on the observed mechanics of claw function rather than the animal's overall ecology, an important departure from the norm followed in previous studies. A principal component analysis of the claw measurements reveals that some of the morphological disparity is related to functional differences; however, different functional categories are not clearly separated based solely on morphology. A linear discriminant analysis successfully classifies 81.25% of the claw specimens to their documented functional categories. When the posterior probabilities of each classification are examined, and the next highest probabilities are considered, the analysis is able to successfully classify 96.25% of the claw specimens. Expressing angle measurements in terms of lengths prior to analysis and incorporating cross-sectional shape data both serve to reduce the misclassification rate. The use of biomechanically meaningful claw measurements and categories based on function (rather than ecology) improves confidence in the ability to infer claw function based on morphology using discriminant analysis methods. While overall claw morphology is most certainly the result of multiple factors (e.g., growth, size, etc.), this study establishes that it reflects mechanical function more than previously demonstrated.


Assuntos
Aves/anatomia & histologia , Casco e Garras/anatomia & histologia , Casco e Garras/fisiologia , Mamíferos/anatomia & histologia , Animais , Fenômenos Biomecânicos , Estudos Transversais , Análise Discriminante , Filogenia , Análise de Componente Principal , Especificidade da Espécie
17.
iScience ; 23(9): 101347, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32822565

RESUMO

Air-breathing marine predators have been essential components of the marine ecosystem since the Triassic. Many of them are considered the apex predators but without direct evidence-dietary inferences are usually based on circumstantial evidence, such as tooth shape. Here we report a fossil that likely represents the oldest evidence for predation on megafauna, i.e., animals equal to or larger than humans, by marine tetrapods-a thalattosaur (∼4 m in total length) in the stomach of a Middle Triassic ichthyosaur (∼5 m). The predator has grasping teeth yet swallowed the body trunk of the prey in one to several pieces. There were many more Mesozoic marine reptiles with similar grasping teeth, so megafaunal predation was likely more widespread than presently conceived. Megafaunal predation probably started nearly simultaneously in multiple lineages of marine reptiles in the Illyrian (about 242-243 million years ago).

18.
Sci Rep ; 10(1): 7798, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385319

RESUMO

Marine tetrapods quickly diversified and were established as marine top predators after the end-Permian Mass extinction (EPME). Ichthyosaurs were the forerunner of this rapid radiation but the main drivers of the diversification are poorly understood. Cartorhynchus lenticarpus is a basal ichthyosauriform with the least degree of aquatic adaptation, holding a key to identifying such a driver. The unique specimen appeared edentulous based on what was exposed but a CT scanning revealed that the species indeed had rounded teeth that are nearly perpendicular to the jaw rami, and thus completely concealed in lateral view. There are three dental rows per jaw ramus, and the root lacks infoldings of the dentine typical of ichthyopterygians. The well-developed and worn molariform dentition with three tooth rows supports the previous inference that the specimen is not of a juvenile. The premaxilla and the corresponding part of the dentary are edentulous. Molariform dentition evolved three to five times independently within Ichthyosauriformes in the Early and Middle Triassic. Convergent exploitation of hard-shelled invertebrates by different subclades of ichthyosauriforms likely fueled the rapid taxonomic diversification of the group after EPME.


Assuntos
Evolução Biológica , Dentição , Extinção Biológica , Fósseis , Paleontologia , Pleurodeles , Animais , Pleurodeles/anatomia & histologia , Dente/anatomia & histologia , Dente/diagnóstico por imagem
19.
J Morphol ; 280(6): 908-924, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006912

RESUMO

Hydrofoil-shaped limbs (flipper-hydrofoils) have evolved independently several times in secondarily marine tetrapods and generally fall into two functional categories: (1) those that produce the majority of thrust during locomotion (propulsive flipper-hydrofoils); (2) those used primarily to steer and resist destabilizing movements such as yaw, pitch, and roll (controller flipper-hydrofoils). The morphological differences between these two types have been poorly understood. Theoretical and experimental studies on engineered hydrofoils suggest that flapping hydrofoils with a flexible trailing edge are more efficient at producing thrust whereas hydrofoils used in steering and stabilization benefit from a more rigid one. To investigate whether the trailing edge is generally more flexible in propulsive flipper-hydrofoils, we compared the bone distribution along the chord in both flipper types. The propulsive flipper-hydrofoil group consists of the forelimbs of Chelonioidea, Spheniscidae, and Otariidae. The controller flipper-hydrofoil group consists of the forelimbs of Cetacea. We quantified bone distribution from radiographs of species representing more than 50% of all extant genera for each clade. Our results show that the proportion of bone in both groups is similar along the leading edge (0-40% of the chord) but is significantly less along the trailing edge for propulsive flipper-hydrofoils (40-80% of the chord). Both flipper-hydrofoil types have little to no bony tissue along the very edge of the trailing edge (80-100% of the chord). This suggests a relatively flexible trailing edge for propulsive flipper-hydrofoils compared to controller flipper-hydrofoils in line with findings from prior studies. This study presents a morphological correlate for inferring flipper-hydrofoil function in extinct taxa and highlights the importance of a flexible trailing edge in the evolution of propulsive flipper-hydrofoils in marine tetrapods.


Assuntos
Membro Anterior/anatomia & histologia , Locomoção , Mamíferos/anatomia & histologia , Répteis/anatomia & histologia , Spheniscidae/anatomia & histologia , Animais , Caniformia/anatomia & histologia , Caniformia/fisiologia , Cetáceos/anatomia & histologia , Cetáceos/fisiologia , Membro Anterior/fisiologia , Fósseis/anatomia & histologia , Mamíferos/fisiologia , Oceanos e Mares , Répteis/fisiologia
20.
Sci Rep ; 9(1): 152, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679783

RESUMO

The end-Permian mass extinction (EPME) led to reorganization of marine predatory communities, through introduction of air-breathing top predators, such as marine reptiles. We report two new specimens of one such marine reptile, Eretmorhipis carrolldongi, from the Lower Triassic of Hubei, China, revealing superficial convergence with the modern duckbilled platypus (Ornithorhynchus anatinus), a monotreme mammal. Apparent similarities include exceptionally small eyes relative to the body, snout ending with crura with a large internasal space, housing a bone reminiscent of os paradoxum, a mysterious bone of platypus, and external grooves along the crura. The specimens also have a rigid body with triangular bony blades protruding from the back. The small eyes likely played reduced roles during foraging in this animal, as with extant amniotes (group containing mammals and reptiles) with similarly small eyes. Mechanoreceptors on the bill of the animal were probably used for prey detection instead. The specimens represent the oldest record of amniotes with extremely reduced visual capacity, utilizing non-visual cues for prey detection. The discovery reveals that the ecological diversity of marine predators was already high in the late Early Triassic, and challenges the traditional view that the ecological diversification of marine reptiles was delayed following the EPME.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Mecanorreceptores/ultraestrutura , Ornitorrinco/anatomia & histologia , Répteis/anatomia & histologia , Animais , China , Ecossistema , Fósseis , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA